Unit 1 Review

Chemistry 0

Fall 2021, L. Tracey Gao

Matter and Elements

- **Matter:** The term **matter** refers to anything that occupies space and has mass.
- Elements: All matter is made up of substances called elements, which have specific chemical and physical properties.

Elements and Atoms

- An element is a substance made up of only one type of atom.
- The <u>atomic number</u> of an atom is equal to the number of <u>protons</u> in its nucleus.
- The <u>number of electrons</u> surrounding the nucleus of an atom is equal to the <u>number of protons</u> in its nucleus.

Elements and Atoms

- Different atoms of the same element can have a different number of <u>neutrons</u>.
- Atoms of the same element with different numbers of neutrons are called "**isotopes**" of that element.
- The atomic weight (average atomic mass) of an element is the average mass of the different isotopes of the element.
- The atoms in the periodic table are arranged to show characteristics and relationships between atoms and groups of atoms.

Atoms

- Atoms are the building blocks of matter.
- Atoms themselves consist of **protons**, <u>neutrons</u> and <u>electrons</u>.
- The number of the **protons** determines its atomic number.
- Different numbers of <u>neutrons</u> in one atom determine the different isotopes of this element.
- <u>Electron</u> structure is the chief factor in determining the chemical behavior of an element.

Elements and Atoms

- The <u>periodic table</u> is a chart containing information about the atoms that make up all matter.
- The elements are numbered according to their **atomic number**.
- The elements are organized by their **electron** structure.

The Periodic Table (Elements 1-20)

HYDROGEN 1 H	PERIODIC TABLE ELEMENTS 1–20						нецим 2 Не 4.00
LITHIUM 3	BERYLLIUM 4	BORON 5	CARBON 6	NITROGEN 7	OXYGEN 8	FLUORINE 9	NEON 10
Li	Be	В	C	Ν	0	F	Ne
6.94	9.01	10.81	12.01	14.01	16.00	19.00	20.18
SODIUM 11	MAGNESIUM 12	ALUMINUM 13	SILICON 14	PHOSPHORUS 15	SULFUR 16	CHLORINE 17	ARGON 18
Na	Mg	AI	Si	Ρ	S	CI	Ar
22.99	24.31	26.98	28.09	30.97	32.07	35.45	39.95
POTASSIUM 19	CALCIUM 20			dir di			1. Å
K	Ca						
39.10	40.08						

https://chem.libretexts.org/

Energy Levels

- The electrons surrounding an atom are located in regions around the nucleus called "energy levels".
- When the first energy level has 2 electrons, the next electrons go into the second energy level until the second level has 8 electrons.
- When the second energy level has 8 electrons, the next electrons go into the third energy level until the third level has 8 electrons.
- When the third energy level has 8 electrons, the next electrons go into the fourth energy level.

Energy Levels for Element 1-20

Valence Electrons

- The electrons on the outermost energy level of the atom are called <u>valence electrons</u>.
- The valence electrons are involved in bonding one atom to another.

Chemical Bonding- Covalent Bonding

- The sharing of electrons between atoms is called a **<u>covalent bond</u>**, which holds the atoms together as a molecule.
- A covalent bond happens if the attractions are strong enough in both atoms and if each atom has room for an electron in its outer energy level.
- Atoms will covalently bond until their outer energy level is full.
- Atoms covalently bonded as a molecule are more stable than they were as separate atoms.

Chemical Bonding- Ionic Bonding

- The attractions between the protons and electrons of atoms can cause an electron to move completely from one atom to the other.
- When an atom loses or gains an electron, it is called an ion. The atom that loses an electron becomes a positive ion. The atom that gains an electron becomes a negative ion.
- A positive and negative ion attract each other and form an **<u>ionic bond</u>**.

Chemical Bonding

- Atoms bond with one another in two different ways-
 - Covalent bonds
 - Ionic bonds
- When two nonmetals share one or more electrons, they form a covalent bond.
- When a metal transfers one or more electrons to a nonmental, they form an ionic bond.
- Both types of bonds are based on the same concept: Atoms tend to behave in such a way as to effectively fill their outer energy level.

Lewis dot structures

- A Lewis dot structure is like a simplified electron energy level model.
- The Lewis structure contains the element symbol with dots representing electrons.
- The only electrons shown are those on the outer energy level or valence electrons.
- The electrons are placed around the element symbol, one at a time, clockwise or counterclockwise, and then grouped in pairs as more electrons are added.

Lewis dot structures

Week 7 Homework

How many electrons are shown in the Lewis electron-dot structure of Nitrogen (N)? Answer: 5 Explanation: Atomic number for Nitrogen: 7, valence electrons: 5

In Lewis structures, the valence electrons are represented by <u>dots</u>.

Week 7 Homework

Please write the Lewis dot structure for Silicon (Si).

Explanation: Atomic Number for Si is 14 Valence electrons: 4

Please draw the Lewis dot structure for methane (CH4) below.

Week 7 Homework

Please draw the Lewis dot structure for calcium chloride (CaCl₂) below.