What (always) happens to light?

The <u>material world around us</u> can be viewed as <u>objects</u> (substances, materials) and <u>boundaries</u> (surfaces, interfaces).

Light can be reflected, transmitted or absorbed by matter.

T%+R%+A%=100%

What *exactly* happens to light waves depends on the nature of the material, the smoothness of the surface, the angle of incidence, and the light wavelength.

Transmission

passage of light in forward direction

All objects around us can be classified as:

(Large T%)

Translucent

partial or selective transmission

<u>Opaque</u> (most materials) do not allow transmission of light, form shadows

Absorbed \checkmark radiation

Reflected

Transmittec 7 radiatior

radiation

Irradiation

Shadows

Sculpture by Diet Wiegman, Netherlands

- Light rays travel in straight lines, radiating out from the light source.
- If rays are blocked by an opaque object, a shadow forms where the light cannot reach.
- If the light source is moved relative to the object, different amount of light is blocked and a different shadow is formed.

Egyptian obelisk at St. Peter's Square, Vatican City

Solar Eclipse

Translucent Creatures

(partial transmission)

Mantis shrimp larva

How do you hide in the ocean? You become see-through!

Light Filters (selective transmission)

Rose Window St. Patrick's Cathedral, New York

Water: a transparent...mirror?

 <u>Vertical</u> rays of light are mostly transmitted through a transparent material (with just a little reflection and absorption).

• If light rays strike the surface at <u>some angle</u>, more of the light is reflected (*larger* angle results in *more reflection*).

^{© 2011} Encyclopædia Britannica, Inc.

How do we see things?

- When we see, we sense light.
- When we see an object, the light that reaches our eyes can come from <u>two different processes</u>:
 - The light can be <u>emitted</u> <u>directly from the object</u> (object=light source), like a light bulb or glow stick.
 - 2. The light can come from somewhere else, like the Sun, and get <u>reflected by</u> <u>the object</u>.

Most of the objects that we see are visible from diffuse reflection.

Phases of the Moon

- Half of the Moon is always lit by sunlight.
- As the Moon revolves around the Earth, we see the lighted part of the Moon's surface from different angles.
- The different shapes we see are called "phases" of the Moon.

Twinkle, twinkle, little star...

- The scientific term is "astronomical scintillation".
- Observed from the Earth, a star is essentially a pin-point light source.
- As starlight travels from space into the Earth's atmosphere, the rays are <u>refracted</u>.
- Since the atmosphere is constantly changing due to turbulence, the <u>amount of refraction</u> also <u>constantly changes</u>.

- This causes the image of a star to form in a <u>slightly different</u> part of our eye retina every moment – we perceive it as twinkling.
- Planets usually do not twinkle why?
- You might actually see a planet twinkling if it appears low at the horizon – why?