Exercise: match wave parameters with their descriptions.

ANSWER	PARAMETER	DESCRIPTION
С	CREST	A. Maximum amount of vibration from the rest position; can be measured to the crest or to the trough.
G	THROUGH	B . The <u>distance</u> over which the wave's shape repeats itself in space.
F	NODE (REST)	C. The highest (maximum) point of a wave.
Α	AMPLITUDE	D. Number of waves per second.
В	WAVELENGTH	E. The <u>time</u> it takes to make one complete vibrational cycle.
Ε	PERIOD	F. Equilibrium position of a wave.
D	FREQUENCY	G. The lowest (minimum) point of a wave.

A standing wave

(also called a stationary wave) is a wave that oscillates in one constant position.

A vibrating guitar string is an example of a standing wave.

Traveling waves can reflect off objects and boundaries...

...and interfere (combine)

To make a standing wave...

...combine two travelling waves that go in opposite directions!

A standing wave pattern forms when vibrations are <u>confined</u>.

Watch out for hot spots!

In microwave oven, standing waves are created in the chamber due to reflection from metal surfaces.

This is exactly what causes <u>hot spots</u> and <u>cold spots</u> in the food. The rotating turntable moves the food around to mitigate this effect. Can you identify two different kinds of vibrations that are created when someone plays a string instrument?

Think about not only what vibrates but how exactly it vibrates!

Watch the particles!

1. STRING vibration

oscillations are perpendicular to the direction of the energy transfer (or wave propagation)

ENERGY TRANSFER

2. AIR vibration

oscillations are parallel (same direction) to the propagation of the wave.

Types of mechanical waves

Let's classify!

And some more!

Т

Ruben's Tube

Invented by German physicist Heinrich Rubens in 1905

visualizing sound waves

https://www.youtube.com/watch?v=1ZcOusmB4Ls