What is a System of Measurement?

A <u>system of measurement</u> is a <u>collection of units</u> of measurement and <u>rules relating them</u> to each other.

• Must have **base units** defined for all major quantities that need to be measured (example: a *foot*).

 Must specify equivalency relationship for all additional units used to measure the same quantity (example: length can also be measured in *inches* or *miles*, defined as 1 foot = 12 inches, 1 mile = 5280 feet).

Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce.

English Units Based Systems

- Imperial System of Measurement (British Empire, 1824):
 - Distance/Length: Inch, foot, yard, mile
 - Volume: fluid ounce, pint, quart, gallon
 - > Area: Acre
 - Weight/Mass (three different systems!): grain, ounce, pound, stone, ton

- Mostly same unit names
- Units are not identical!
 (1 US gal=0.83 imp gal)
- Different units for liquid and dry measures (liquid/dry ounce)

The Metric System

The <u>metric system</u> is an internationally agreed decimal (based on power of 10) system of measurement. It was originally introduced by France in 1799.

Modern "Metric system" term is a synonym for "SI" or the "International System of Units" (1960)—the official system of measurement in almost every country in the world.

Origin of the Metric System

- Idea of standardized system of measurement based on the decimal was first proposed <u>as early as ~1670</u>.
- The first practical implementation was carried out by French Revolutionaries towards the end of the 18th century.
- In 1790 a committee (including mathematicians Laplace and Legendre, and chemist Lavoisier) was appointed to develop a unified, natural, universal system of measurement.

It was called the "metric" system (French for measure).

Metric System Basics

- The <u>metric system</u> was built around <u>three base units</u> that corresponded to a certain kind of measurement:
 - Length = meter
 - Volume = liter
 - Weight (Mass) = gram
- The base units were derived from the natural world: the *dimensions of the Earth* and *properties of water*.
- <u>Decimal multiplicative prefixes</u> were added to base units to make up the full range of metric system:
 milli + meter = millimeter nano + liter = nanoliter

> kilo + gram = kilogram > micro + meter = micrometer

 Historically, <u>prototypes</u> ("originals") of base units were kept in the Archives Nationales in France with <u>copies manufactured</u> <u>and distributed</u> among other countries - members of The Metre Convention of 1875 (and subsequent conventions).

Original Definitions

1. Meter (length) - one ten millionth (1/10,000,000) of the quarter of the Earth's meridian*.

*determined based on the 1792-1798 survey of the length of the Earth's meridian between Dunkirk (51°N) and Barcelona (41°N) through Paris.

- 2. Gram (mass) the mass of one cubic centimeter of water at the melting point of water.
- **3.** Second (time) 1/86,400 of a mean solar day; the fraction 1/31,556,925.9747 of the tropical year 1900.
- Degree Centigrade (temperature) obtained by assigning 0°C to the freezing point of water and 100°C to the boiling point of water.

Fundamental SI Units

As Metric System evolved into the **SI system**, **seven mutually independent fundamental units** have been selected:

- 1. Meter (length)
- 2. Kilogram (mass)
- 3. Second (time)
- 4. Kelvin (temperature)
- 5. Ampere (electric current)
- 6. **Candela** (luminous intensity)
- 7. **Mole** (amount of elementary entities like atoms or molecules)

On May 20, 2019, all seven have been redefined based on fundamental physical constants.

Prefixes in Metric System

Prefix	Symbol	Factor	
tera	Т	100000000000	10¹²
giga	G	100000000	10 ⁹
mega	М	1000000	10 ⁶
kilo	k	1000	10 ³
hecto	h	100	10 ²
deca	da	10	10¹
(none)	(none)	1	10 ⁰
deci	d	0.1	10 ⁻¹
centi	С	0.01	10 ⁻²
milli	m	0.001	10 ⁻³
micro	μ	0.000001	10 ⁻⁶
nano	n	0.00000001	10 ⁻⁹
pico	р	0.00000000001	10 ⁻¹²

What is the order of the metric system?

- King Henry Died by Drinking Chocolate Milk
- larger

smaller

- King: Kilo
- Henry: Hecto
- Died: Deca
- By: **Base** (m, L, g)
- Drinking: Deci
- Chocolate: Centi
- Milk: Milli

Metric Examples

Any US paper currency note (\$1, \$5, \$10, \$20) has a mass of 1 g; the mass of a nickel is 5 g; the mass of a penny is 2.5 grams.

A typical doorknob is ~1 m high.

The mass of the Earth is 6×10²⁴ kg; the mass of the Moon is 7.3×10²² kg; the mass of the Sun is 1.99×10³⁰ kg.

Diameter of Influenza virus is ~20 nm.

Typical airport runway length is 3.35 km; Boeing 767 jet is 64 m long.

The diameter of a CD or a DVD is 12 cm; the diameter of the center hole is 15 mm.