Ampere's Law

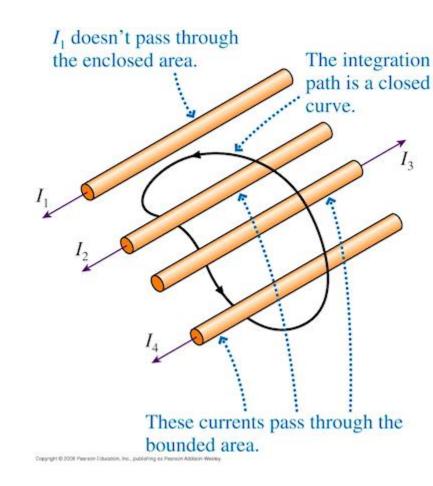
Consider an arbitrary closed loop (for instance, a circle). Ampere's Law states that the integral of magnetic field along that loop is proportional to the total current enclosed by it:

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \sum_{\text{inside the loop}} I$$

Note that the integral contains "dot" product that depends on the angle between vector B and the local direction of the integration path:

$$\vec{B} \cdot d\vec{l} = |\vec{B}| |d\vec{l}| \cos \alpha$$

$$\mu_0 = 4\pi \cdot 10^{-7} T \cdot m / A$$



Using Ampere's Law: Infinite Wire

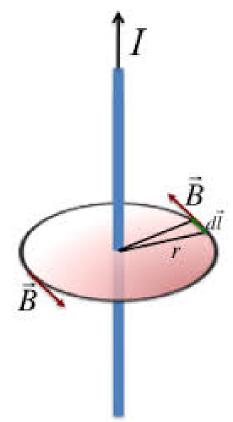
Consider a straight infinite wire carrying current I. As an integration loop we choose a circle of radius r around the wire. At any point of the loop, B is constant and directed along the path, therefore $\cos(\alpha)=1$.

$$\oint \vec{B} \cdot d\vec{l} = 2\pi r B$$

By using Ampere's Law, we obtain:

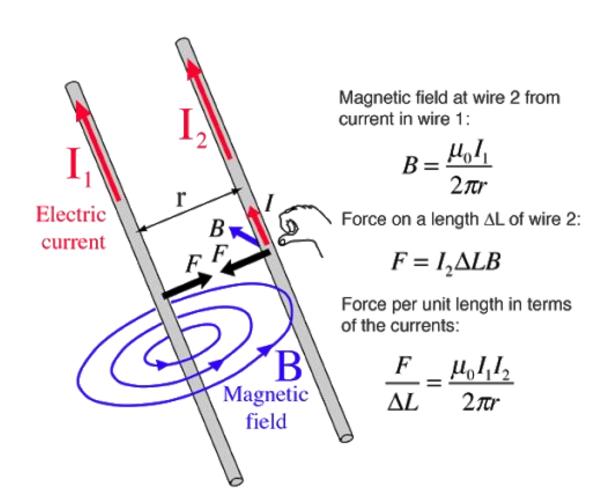
$$B = \frac{\mu_0 I}{2\pi r}$$

Direction of B is determined by the right hand rule.



Magnetic Force Between Wires

We combine Ampere's Law with Lorenz Force, $F=I\Delta LB$:

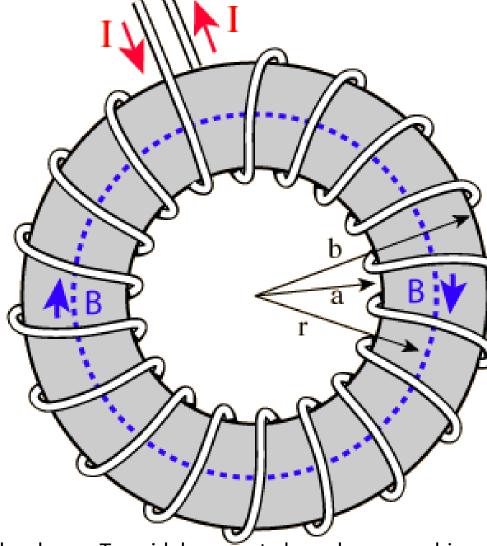


Homework

Problem 1

Two parallel wires of radius r=0.1 mm each, are placed right next to each other (i. e. distance between their centers is 2r). The same current I is run through each wire. Find the value of I, at which the magnetic force between the wires is equal to the weight of each of them. Density of cupper is 9000 kg/m^3 .

Homework



Problem 2

Torus is a mathematical term for a bagel- like shape. Torroidal magnets have been used in tape recorders, and other devices. Find the magnetic field B inside of the torroidal magnet, near its centerline that has a shape of a circle of radius r (shown in the Figure as blue dashed line)). The wire makes N turns around the torus, and the current is I.

How many turns do you need to produce 1 T magnetic field in a torus of radius r=30 cm, if current is I=1A?