• **1 Mole [mol]** of any substance contains the same number of molecules , called **Avogadro Number:**

$$N_A \approx 6.02 \cdot 10^{23} \frac{1}{mol}$$

• Molar Mass, μ [g/mol] is the mass of 1 mole of a given substance. To find it, you need to add up **atomic weights** of all the atoms in a single molecule. Those can be found in Periodic Table.

Example: $\mu_{H_20} = (2+16)\frac{g}{mol} = 18\frac{g}{mol}$

	Volume	Mass	Amount of Substance	Number of Molecules
Symbol	V	Μ	n	Ν
Units	[m ³] or [cm ³]	[kg] or [g]	[mol]	1
$\rho = \frac{M}{V}$ $n = \frac{M}{\mu}$ $v = \frac{N}{N_A}$ Greek 'rho' Greek 'mu'				

Ideal Gas Law (revisited)

Results of Boltzmann's kinetic theory: pressure of molecules bombarding the wall.

Applying the 1st Law of Thermodynamics to ideal gas

 $\Delta Q = \Delta E + \Delta W$

• ΔQ - total heat adsorbed by gas

R

Work

Ρ

- ΔE change in internal energy, $\Delta E = nC_V\Delta T$. Here C_V is specific heat per mole at constant volume, can be found as $C_V = dR/2$ (d-number of degrees of freedom per molecule, R is universal gas constant)
- Work ΔW can be found as an integral $\int P dV$, or area under P(V) plot coordinates.

Problem 1

What is the number of molecules in a room of size 4x5x2.5 meters, at normal conditions (*T*=300K, *P*= 100kPa)? Find the total kinetic energy of these molecules, associated with translational motion and rotation (most of those molecules are nitrogen and oxigen).

Problem 2

Below is PV diagram for 1 mole of gas. Find the change in internal energy, work done by the gas, and the total heat adsorbed by it during this process. Initial and final states are: (0.02 m³, 100 kPa) and (0.03 m³, 150 kPa). Specific heat of gas at constant volume is $C_V = 20$ J/K/mol. Note that PV=RT for for n=1 mole.

