## Applying the 1<sup>st</sup> Law of Thermodynamics to ideal gas

 $\Delta Q = \Delta E + \Delta W$ 

- $\Delta Q$  total heat adsorbed by gas
- $\Delta E$  change in internal energy,  $\Delta E = nC_V\Delta T$ . Here  $C_V$  is specific heat per mole at constant volume.
- Work  $\Delta W$  can be found as an integral  $\int P dV$ , or area under P(V) plot coordinates.



## **Efficiency of Heat Engine**



Heat Engine has to take heat  $\Delta Q_H$  from "heat bath", and return heat  $\Delta Q_C$  to a "cooler".

$$Work = \Delta Q_H - \Delta Q_C$$

## Homework

A heat engine is using 1 mole of gas that undergoes the process shown on PV diagram. Find the change in internal energy, work done by the gas, and total heat adsorbed during each segment (a->b,b->c, and c->d).

Specific heat of the gas at constant volume is  $C_V = 20$  J/K/mol. Note that PV=RT for n=1 mole. Universal gas vconstant is R= 8.3 J/K/mol

