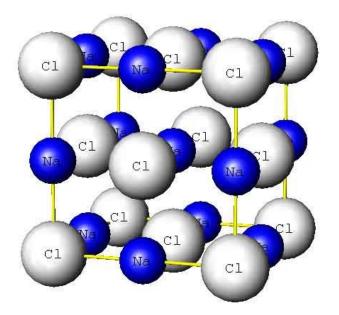
• **1 Mole [mol]** of any substance contains the same number of molecules , called **Avogadro Number:** 

$$N_A \approx 6.02 \cdot 10^{23} \frac{1}{mol}$$

• Molar Mass,  $\mu$  [g/mol] is the mass of 1 mole of a given substance. To find it, you need to add up **atomic weights** of all the atoms in a single molecule. Those can be found in Periodic Table.

Example:  $\mu_{H_20} = (2+16)\frac{g}{mol} = 18\frac{g}{mol}$ 


|        | Volume                                  | Mass        | Amount of<br>Substance   | Number of<br>Molecules |
|--------|-----------------------------------------|-------------|--------------------------|------------------------|
| Symbol | V                                       | Μ           | n                        | Ν                      |
| Units  | [m <sup>3</sup> ] or [cm <sup>3</sup> ] | [kg] or [g] | [mol]                    | 1                      |
|        | $\rho = -\frac{1}{2}$<br>Greek 'r       |             | $=\frac{M}{\mu}$ $\nu =$ | $=\frac{N}{N_A}$       |

## Problem 1

Suppose you know density  $\rho$  (in g/ml) and molar mass  $\mu$  (in g/mol) for certain substance. Find how many molecules are contained in volume V of this substance. Using this general formula, determine how many molecules are there in V= 100 ml of each of the materials in the table (you will need to consult the Periodic table to find  $\mu$ ):

| Substance                                     | ρ (g/ml) | μ (g/mol) | # of molecules in<br>V = 100 ml |
|-----------------------------------------------|----------|-----------|---------------------------------|
| liquid water, H <sub>2</sub> 0                | 1        |           |                                 |
| liquid propane, C <sub>3</sub> H <sub>8</sub> | 0.5      |           |                                 |
| Calcite (chalk)                               | 2.7      |           |                                 |
| Aluminum*, Al                                 | 2.7      |           |                                 |
| Gold*, Au                                     | 19.3     |           |                                 |

For metals (Al and Au) consider one atom to be a molecule.



## Problem 2

Table salt (or Sodium Chloride, *NaCl*) is made of Sodium (Na+) and Chlorine (Cl–) ions held together by static electricity. Ions are atoms with extra or missing electrons (in this case, Chlorine steals one electron from Sodium). These ions form a cubic crystal as the one shown in the Figure. Find the distance between neighboring ions (Na and Cl), in cm, if the density of *NaCl* is  $\rho$ =2.16 g/ml.

Hint: from the previous problem you can find the number of Na and Cl ions in any volume. On the other hand, each ions occupies one cube of volume  $a^3$ . Remember that 1 ml=1cm<sup>3</sup>.