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1. Becoming Comfortable with Roots

Recall that, given a polynomial p(x), the roots of p(x) are numbers xi such that p(xi) = 0. We know from
the factorization theorem that p(r) = 0↔ (x− r)|p(x), and similarly for a collection of distinct numbers x1,
..., xk, that they are all roots if and only if (x− x1)(x− x2)...(x− xk)|p(x). The “number of roots” theorem
says that a polynomial of degree n is uniquely determined by its n roots, if it has n roots. Well, it turns out
that a polynomial of degree n always has n roots - though these roots may be repeated, and some of them
might not be real numbers. But still the following theorem is useful.

Theorem 1 (Fundamental Theorem of Algebra). Any polynomial of degree ≥ 1 has a root. This root may
be complex.

Proof. Don’t worry too much about the proof of this theorem, I just want you to know what it’s called,
and that it’s quite a famous theorem. There are many proofs of it, but most involve analysis or abstract
algebra. �

Now, you can break a degree n polynomial down to its roots by applying the Fundamental Theorem of
Algebra and then the Factorization Theorem to pull out the (x−xi) factors one by one. Here is an example.

p(x) = x3 + x2 − x− 1

How do you factorize this polynomial? All its roots are real, so let’s go through it step by step. The first
root I want to point out is x1 = 1. You can check for yourself that 1 is a root by plugging it into p(x).
Now divide p(x) by (x− 1) to factor out the root x1 = 1. This leaves you with

p(x) = (x− 1)(x2 + 2x+ 1)

You may or may not recognize the remaining factor, but I’ll tell you that −1 is a root of it. So, x2 + 2x+ 1
should be divisible by (x+ 1). This gives us

p(x) = (x− 1)(x+ 1)(x+ 1)

And we see that the final root is −1. We have therefore broken down this degree 3 polynomial into a product
of three degree 1 factors.

A similar process can be done for any polynomial, so long as you feel safe working with complex numbers.
For the moment, however, I want you to notice the repeat of one of the roots. This is possible in general,
and it is called multiplicity. Given any number r and a polynomial p(x), the greatest integer k such that
(x− r)k|p(x) is called the multiplicity of the root r. In this example, the roots of x3 + x2 − x− 1 are 1 with
multiplicity 1, and −1 with multiplicity 2.

Here is one more theorem for fun.

Theorem 2 (Rational Root Theorem). If p(x) is a polynomial with integer coefficients and r ∈ Q is a
root of p(x), then r is an integer, and r is a factor of the constant term of p(x).

Proof. Let r = a
b for relatively prime integers a, b. Let the degree of p(x) be n, and write p(x) as xn +

an−1x
n−1 + an−2x

n−2 + ...+ a0. Then

bnp(
a

b
) = an + an−1a

n−1b+ an−2a
n−2b2 + ...+ a0b

n

Given that p(r) = 0, we then get

an + an−1a
n−1b+ an−2a

n−2b2 + ...+ a0b
n = 0

Take this equation mod b to get
an ≡ 0 mod b

Therefore b|a. Since the gcd of a, b is 1, and b|a implies b is a common factor of a, b, we must have b = 1.
This proves that r is an integer. Now take the equation mod a to get

a0b
n ≡ 0 mod a



This proves that a0 ≡ 0 mod a, which means that a|a0. �

2. Vieta: Quadratic

Now I can talk to you about the relationship between roots and coefficients. This theory concerns what
are called the Vieta formulas.

Theorem 3 (Vieta, Quadratic). Given a quadratic polynomial x2 + bx + c, with real coefficients b, c ∈ R,
the roots x1,x2 satisfy the following equations:

(−1) · (x1 + x2) = b

x1x2 = c

Proof. Given that x1,x2 are roots of the polynomial, we can factor it as (x− x1)(x− x2). We therefore get

x2 + bx+ c = (x− x1)(x− x2) = x2 − x1x− x2x+ x1x2 = x2 − 1 · (x1 + x2)x+ x1x2

�

Thus the coefficients of a quadratic polynomial depend directly on its roots. These formulas are extremely
helpful in understanding quadratic polynomials, and can be used in a variety of contexts.

3. Vieta: In General

To understand the general Vieta formulas, it is helpful to know the word symmetric polynomial. A symmetric
polynomial of degree k on n variables is a polynomial of n variables that satisfies the property that swapping
the order of the variables doesn’t change the polynomial. The elementary symmetric polynomial of degree
k, written σk, is the sum of all products of k variables from the collection of n variables plugged into the
polynomial. Here is an example of σ3:

σ3(x1, x2, x3) = x1x2x3

σ3(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

σ3(x1, x2, x3, x4, x5) = x1x2x3 + x1x2x4 + x1x2x5 + ...

Basically, it contains all combinations of 3 variables. If there are n variables x1, ..., xn, then there are n
choose 3 terms in σ3(x1, ..., xn).

Now here are the Vieta formulas.

Theorem 4 (Vieta Formulas). Given a degree n polynomial p(x) = xn + an−1x
n−1 + an−2x

n−2 + ... + a0
(notice that the coefficient of xn is 1), with roots x1, ..., xn, the coefficient of xn−k is the symmetric polynomial
(−1)kσk(x1, ..., xn).

Here is an example of what it looks like on a cubic polynomial. Let p(x) be the cubic polynomial
p(x) = x3 + ax2 + bx+ c, and let the roots of this polynomial be q, r, s. Then

a = (−1)(q + r + s)

b = (+1)(qr + qs+ rs)

c = (−1)(qrs)

In particular, for a degree n polynomial whose leading coefficient is 1, the coefficient of xn−1 is −1 times
the sum of the roots, and the constant term is (−1)n times the product of the roots.


