MATH 9: MORE SET STUFF

2021/01/31

1. Classwork

We did these problems in class. yay!

- (a) Construct a function f : Z → Z such that every element in the range of f is a perfect cube (an integer whose cube root is an integer). "Construct" a function means give the formula for the function, or some method of determining the output given any input. The function f(x) = x³ works.
 - (b) Construct a function $f : \mathbb{Z} \to \mathbb{Z}$ such that for each integer $n \in \mathbb{Z}$, there are exactly two integers in \mathbb{Z} that map to n under f, i.e. there are exactly two integers x, y such that f(x) = f(y) = n. The function $f(x) = floor(\frac{x}{2})$ works.
- (a) Given two functions f: A→B and g: B→C that are both bijections, prove that the function g ∘ f : A→C is a bijection. To prove this, prove that a composition of surjective functions is surjective, then prove that the composition of injective functions is injective. Now, we know that a function is bijective if and only if it is surjective and injective, therefore we can deduce that the composition of bijections is bijective.
 - (b) Given two functions f : A → B and g : C → B that are both bijections, prove that there is a bijective function from A to C. To solve this, use part (a). Since g is a bijection, it has an inverse, call it g⁻¹. Now apply part (a) to the composition g⁻¹ ∘ f and this gives you a bijection from A to C.
 - (c) Prove that if X is a countable set and $f: Y \to X$ is a bijection, then Y is also countable. A set is countable if it has a bijection to \mathbb{N} . So we know that there is a bijection $g: X \to \mathbb{N}$. Now use part (a) to deduce the needed information about having a bijection from Y to \mathbb{N} .
 - (d) Prove that, given any two countable sets X and Y, there is a bijective function from X to Y. This is very similar to (c), but this time you need to use (b) instead of (a) to pull off the proof. In this case, X and Y both have bijections to N, and this fact allows you to use part (b).

2. Homework, More Set Stuff

- (a) What is the range of f : R² → R², f(x, y) = (x, y²)? What is the range of f(x, y) = (x+y, x+y)?
 (b) Construct a function f : R² → R² such that the range of f is a line. Let the set F₀ be defined as F₀ = {(x, y) ∈ R² | f(x, y) = (0, 0)}.
 - (c) Construct a function $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that the range of f is a line and the set F_0 is a line that is perpendicular to the range of f.
 - (d) Construct a function $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that the range of f is a line and the set F_0 is a line that is *not* perpendicular to the range of f.
- **2.** Let $E \subset \mathbb{N}$ be the set of all even natural numbers and $O \subset \mathbb{N}$ the set of all odd natural numbers.
 - (a) Prove that E is countable. Do so by constructing a bijective function from E to \mathbb{N} .
 - (b) Prove that O is countable.
 - (c) Prove that $E \cup O$ is countable.
 - (d) Prove that, in general, given any two countable sets A, B, the union $A \cup B$ is countable.
- **3.** Prove that any infinite subset of \mathbb{N} is countable.
- 4. Let $T_n \subset \mathbb{N}$ be the set of all natural numbers whose power of 2 in their prime factorization is n. So for example, $2^2 3^5 5^1$ is in T_2 , $2^3 11^2$ is in T_3 , $2^0 3^1 5^2$ is in T_0 , etc.
 - (a) List out the numbers from 1 to 20 and determine which of the sets T_n each number is in.
 - (b) Given any n, construct a bijection from T_n to T_{n+1} .
 - (c) Prove that T_0 is countable (you may use previous homework problems in this problem sheet as proof, if you have completed them).
 - (d) Prove that T_n is countable for all $n \in \mathbb{N}$.
 - (e) Prove that the union $T_0 \cup T_1 \cup T_2 \cup T_3 \cup ...$ is countable.

- 5. Let $f : \mathbb{N}^2 \to \mathbb{N}$ be given by $f(m, n) = (2m+1) \cdot 2^n$. First describe the range of f, then prove whether it is a bijection. Then explain whether you think \mathbb{N}^2 is countable.
- **6.** Let A, B be countable sets. Prove that the product $A \times B$ is countable.
- 7. Let S be the set of all finite strings of letters and spaces. A string is any collection of characters, like "atxc rtt etet b", consisting of letters and spaces (regardless of whether it makes sense). Prove that S is countable.

Then prove that the set of sentences of the English language is countable.