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Algebra.  

Recap: Elements of number theory. Euclid’s algorithm and greatest common 

divisor. 

 

All numbers used in this section are integers (possibly negative). 

Theorem 1 (division representation).  

Let 𝑎, 𝑏 be integer numbers, with 𝑏 > 0. Then 𝑎 can be uniquely written in the 

form  

𝑎 = 𝑏𝑞 + 𝑟,  𝑞, 𝑟 ∈ ℤ, 0 ≤ 𝑟 < 𝑏 

Note that we do not assume that 𝑎 is positive.  

Proof. Let us consider the smallest integer number 𝑚 such that 𝑎 < 𝑚𝑏. Take 

𝑞 = 𝑚 − 1; then 𝑞𝑏 ≤ 𝑎 < (𝑞 + 1)𝑏, so if we define 𝑟 = 𝑎 − 𝑞𝑏, then               

0 ≤ 𝑟 < 𝑏. This proves existence; uniqueness is left as an exercise. 

The number 𝑟 in that theorem is called remainder upon division of 𝑎 by 𝑏. 

Note: we didn’t justify why such 𝑚 exists, as it seems obvious. For those who 

want to insist on absolute mathematical rigor, we note that this can be 

justified using induction (in 𝑎).   

Definition. A number 𝑑 ∈ ℤ is a divisor (or a factor) of an integer 𝑎 if  𝑎 = 𝑞𝑑 

for some integer 𝑞. In this situation we also say that 𝑎 is divisible by 𝑑 and 

write 𝑑|𝑎. (Note that both 𝑎 and 𝑑 could be negative.) 

A number 𝑑 is called a common divisor of  integer numbers 𝑎, 𝑏 ∈ ℤ if 𝑑|𝑎 and 

𝑑|𝑏.  



A set of all positive common divisors of the two numbers 𝑎, 𝑏 ∈ ℤ is limited 

because these divisors can’t be larger than the absolute value of the smaller of 

the two numbers. The greatest of the divisors, 𝑑, is called the greatest 

common divisor (𝑔𝑐𝑑) and denoted 𝑑 = (𝑎, 𝑏).  

Definition. Two integers 𝑎, 𝑏 ∈ ℤ, are called relatively prime if they have no 

common divisors larger than 1, i. e. (𝑎, 𝑏) = 1.  

Theorem 2. Let 𝑎, 𝑏 be integer numbers, and let 𝑟 be the remainder upon 

division of 𝑎 by 𝑏: 𝑎 = 𝑏𝑞 + 𝑟. Then  

(𝑎, 𝑏) = (𝑏, 𝑟). 

Proof. Indeed, if 𝑑 is a common divisor of 𝑎, 𝑏 ∈ ℤ, then 𝑎 = 𝑛𝑑, 𝑏 = 𝑚𝑑 for 

some integers 𝑚, 𝑛. Therefore, 𝑟 = 𝑎 − 𝑏𝑞 = 𝑛𝑑 − 𝑞𝑚𝑑 = 𝑑(𝑛 − 𝑞𝑚), so 𝑟 is 

divisible by 𝑑; therefore, 𝑑 is a common divisor of 𝑏, 𝑟. 

Conversely, if 𝑑′ is a common divisor of 𝑏 and 𝑟 = 𝑎 − 𝑏𝑞, then similar 

argument shows that  𝑑′ is a common divisor of 𝑏 and 𝑎.  

Hence, set of common divisors of pair 𝑎, 𝑏 is the same as set of common 

divisors of pair 𝑏, 𝑟. In particular, it shows that both pairs have the same gcd.  

Corollary 1 (Euclid’s algorithm). In order to find the greatest common divisor 

𝑑 = (𝑎, 𝑏), one proceeds iteratively performing successive divisions, 

𝑎 = 𝑏𝑞 + 𝑟 , (𝑎, 𝑏) = (𝑏, 𝑟 ) 

𝑏 = 𝑟 𝑞1 + 𝑟1, (𝑏, 𝑟 ) = (𝑟 , 𝑟1), 

𝑟 = 𝑟1𝑞2 + 𝑟2, (𝑟 , 𝑟1) = (𝑟1, 𝑟2),  

𝑟1 = 𝑟2𝑞3 + 𝑟3, (𝑟1, 𝑟2) = (𝑟2, 𝑟3), … , 𝑟𝑛−1 = 𝑟𝑛𝑞𝑛+1 

𝑏 > 𝑟1 > 𝑟2 > 𝑟3 > ⋯ 𝑟𝑛 > 0
 

⇒ ∃𝑑 ≤ 𝑏, 𝑑 = 𝑟𝑛 = (𝑎, 𝑏) 



The last positive remainder, 𝑟𝑛, in the sequence {𝑟𝑘} is (𝑎, 𝑏), the 𝑔𝑐𝑑 of the 

numbers 𝑎 and 𝑏. Indeed, the Eucleadean algorithm ensures that 

(𝑎, 𝑏) = (𝑏, 𝑟1) = (𝑟1, 𝑟2) = ⋯ = (𝑟𝑛−1, 𝑟𝑛) = (𝑟𝑛, 0) = 𝑟𝑛 = 𝑑 

Examples.  

a. (385,105) = (105,70) = (70,35) = (35,0) = 35 

b. (513,304) = (304,209) = (209,95) = (95,19) = (19,0) = 19 

Corollary 2 (Extended Euclid’s algorithm). 

Let 𝑎, 𝑏 be integer numbers. Then a number 𝑛 can be written in the form  

𝑛 = 𝑥𝑎 + 𝑦𝑏, 𝑥, 𝑦 ∈ ℤ 

if and only if 𝑛 is divisible by 𝑑 = (𝑎, 𝑏).  

Example.  An integer number 𝑛 can be written in the form 𝑛 = 9𝑥 + 21𝑦 if and 

only if 𝑛 is a multiple of 3. 

Proof.  One direction is obvious: if 𝑛 = 𝑥𝑎 + 𝑦𝑏, and both 𝑎, 𝑏 are divisible by 

𝑑, then clearly 𝑛 is also divisible by 𝑑.  

To prove the opposite direction, it is enough to show that 𝑑 = (𝑎, 𝑏) can be 

written as  a combination of 𝑎, 𝑏.  

To do that, recall Euclid’s algorithm:  

(𝑎, 𝑏) = (𝑏, 𝑟1) = (𝑟1, 𝑟2) = ⋯ = (𝑟𝑛−1, 𝑟𝑛) = (𝑟𝑛, 0) = 𝑟𝑛 = 𝑑 

Since 𝑏 = 0 ∗ 𝑎 + 1 ∗ 𝑏,  𝑟1 = 𝑎 − 𝑞1𝑏, we see that both 𝑏, 𝑟1 can be written as 

combination of 𝑎, 𝑏. But then 𝑟2 = 𝑏 − 𝑞2𝑟1 = 𝑏 − (𝑎 − 𝑞1𝑏) = −𝑎 + (𝑞1 + 1)𝑏 

is also a combination of 𝑎, 𝑏. More generally, if we already know that 𝑟𝑘−1 =

𝑥𝑘−1𝑎 + 𝑦𝑘−1𝑏, 𝑟𝑘 = 𝑥𝑘𝑎 + 𝑦𝑘𝑏, then  

𝑟𝑘+1 = 𝑟𝑘−1 − 𝑞𝑘𝑟𝑘 = 𝑥𝑘−1𝑎 + 𝑦𝑘−1𝑏 − 𝑞𝑘(𝑥𝑘𝑎 + 𝑦𝑘𝑏)

= (𝑥𝑘−1 − 𝑞𝑘𝑥𝑘)𝑎 + (𝑦𝑘−1 − 𝑞𝑘𝑥𝑘)𝑏 



so it is again written as a combination of 𝑎, 𝑏. Thus, by induction, all 𝑟𝑖  are 

linear combinations of 𝑎, 𝑏 – including the last nonzero remainder, 𝑑 = (𝑎, 𝑏). 

Exercise. Find the representation 𝑑 = 𝑥𝑎 + 𝑦𝑏 for the pairs (385,105) and 

(513,304) considered in the above examples.  

 

Continued fractions 

A continued fraction is a presentation of a rational number in the form below: 

𝑎

𝑏
= 𝑞 +

1

𝑞1 +
1

𝑞2 +
1

…

 +
1

𝑞𝑛 +
1

𝑞𝑛+1

 

To find such a representation, let us do repeated division with remainder:  

𝑎 = 𝑏𝑞 + 𝑟, so 
𝑎

𝑏
= 𝑞 +

𝑟

𝑏
= 𝑞 +

1

𝑏/𝑟
 

Now repeat the same for 
𝑏

𝑟
, and so on:  

 
𝑏

𝑟 
= 𝑞1 +

𝑟1

𝑟 
= 𝑞1 +

1
𝑟 
𝑟1

, 
𝑟

𝑟1 

= 𝑞2 +
1

𝑟1 
𝑟2

,…, 
𝑟𝑛−1

𝑟𝑛
= 𝑞𝑛+1.  

You might notice that this is the same process as in the Euclid’s algorithm: we 

get the next remainder 𝑟𝑘+1 as the remainder upon division of 𝑟𝑘−1 by 𝑟𝑘. (The 

main difference is that in Euclid’s algorithm we discarded the quotients 𝑞𝑘, 

and here we use them.) 

Exercise. Find the continued fraction representations for 
385

105
, 

513

304
, 

105

385
, 

304

513
.  



Example. 
105

385
=

1
385

105

=
1

3+
1

105
70

=
1

3+
1

1+
1

70
35

=
1

3+
1

1+
1
2

.  

You could even try finding continued fractions representation for irrational 

numbers, e.g.  

π = 3 + 0.14115926 … = 3 +
1

7.062516 …
= 3 +

1

7 + 0.062516 …

= 3 +
1

7 +
1

15.996 …

 

In this case, the sequence of quotients never ends, so we get an infinite 

expression. However, we can terminate at any moment to get an approximate 

value: for example,  

π ≈ 3 +
1

7
=

22

7
 

It can be shown that these successive approximations get closer and closer to 

the actual number (to do it properly, you need to introduce the notion of 

limit). It can also be shown that the approximations obtained in this way are 

in some sense optimal: for example, 
22

7
 is the best possible approximation to π 

among all fractions with denominator ≤ 7.   


