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Geometry.

Thales (intercept) theorem. Similarity and related concepts.

MéEylotov TOTOG: dTavTa yap xwpel

“Space is the greatest thing, as it contains all things”

Thales of Miletus
Born c. 624 BC
Died c. 546 BC

Era Pre-Socratic

Thales of Miletus (/'Oeili:z/; Greek: OaAfis (0 MiAnol0¢),
Thalés; c. 624 - c. 546 BC) was a pre-Socratic Greek
philosopher from Miletus in Asia Minor (present-day
Turkey), and one of the Seven Sages of Greece. Many,
most notably Aristotle, regards him as the first
philosopher in the Greek tradition.

Thales was probably the first to introduce the scientific
method into public discourse. He attempted to explain
natural phenomena without reference to mythology
and was tremendously influential in this respect.
Thales' rejection of mythological explanations became
an essential idea for the scientific revolution, and many
Greek philosophers regarded Thales as the first of the
Greek philosophers. Aristotle reported Thales'
hypothesis about the nature of matter - that the
originating principle of nature was a single material
substance: water, the first materialist philosophy.

In mathematics, Thales is known for his contribution to geometry, both
theoretical as well as practical. Thales understood similar triangles and right
triangles, and used that knowledge in practical ways to solve problems such
as calculating the height of pyramids and the distance of ships from the shore.
The story is told that he measured the height of the pyramids by their
shadows at the moment when his own shadow was equal to his height. He is
also credited with the first use of deductive reasoning applied to geometry, by
deriving four corollaries to Thales' Theorem. He is the earliest person to
whom a mathematical result is attributed (though, of course, not the first
person to make mathematical deductions).
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Thales (intercept) theorem.

Thales' intercept theorem (not to be confused with another theorem with that
name, which is a particular case of the inscribed angle theorem) is an
important theorem in elementary geometry about the ratios of various line
segments that are created if two intersecting lines are intercepted by a pair of
parallels. It is equivalent to the theorem about ratios in similar triangles.

Theorem 1. Let parallel lines AA’, BB’, CC’ and DD’
intercept the sides of an angle AOA’ such that
segments AB and CD on one side of the angle are
congruent, |AB| = |CD|. Then the corresponding
segments formed at the intersection of these lines

with the other side of the angle are also
congruent, |A’B’|=|C'D’|, Fig. 1(a).

Proof. Draw lines A’'B” and C’'D” parallel to the
side OA, such that AA’B”B and CC’'D”’D are
parallelograms, Fig. 1(b). By the property of a
parallelogram, |AB|=|A’B”|, and |CD|=|C'D"|.
Angles B'A’B” and D'C’'D” and A’'B”B’ and C’'D”’D’
are formed by the parallel lines and therefore are

(b)

congruent. Hence, triangles A'B"B’ and C'D”D’ are
congruent, and therefore |A’B’|=|C'D’|. o A\ B\ C\ D\

Theorem 2. Let the sides of an angle AOA’ be intercepted by two parallel lines
AA’ and BB’, Fig. 2. Then, for the segments obtained by these intersections, the
following holds.

1. The ratios of any 2 segments on the first line,
OA, equal the ratios of the corresponding
segments on the second line, OA’,

|0A] _ |0A'| A |0B| _ |0B'| A |oB| _ |0B’|

|AB| ~ |A'B'| "' |0A| |04’ "' |AB|  |A'B'[




2. The ratio of the 2 segments on the same line starting at O equals the ratio
of the segments on the parallels,

|0A] _ |0A"| _ |AA|
|OB| |0B’| |BB'|’

3. The converse of the first statement is true as well, i.e. if the 2 intersecting
lines forming the sides of an angle with the vertex O are intercepted by 2
arbitrary lines at points A, B on one side and A’, B’ on the other, such that

% :32 :holds then the 2 intercepting lines are parallel. However, the
converse of the second (@)

statement is not true.
4. If you have more than 2 lines

intersecting in O, then ratio of
the 2 segments on a parallel
equals the ratio of the
according segments on the
other parallel. Several
examples of parallel lines

(b) B
W X
wo

configurations are shown in
the Figure.

|AA/I| . |AI/A/| |AAII|_|BBII|
|BB'"|  |B''B'|' |AA’| ~ |BB'|’

Proof. We shall prove the statement 1 above, the rest follows

straightforwardly.
R Ty L , then assume WLOG — 45| lA B, land find a point B” on OA’
IOAI l0A"|’ |0A| |04’
such that 22! w.
loal — |04'|
- Find some length [ that is less than |B'B”|
and evenly divides OA’.

- Construct lines parallel to AA’ that divide
OA’ into segments of length [. Continue this
until lines intersect OA at a point past B.

- Let the final line constructed from the last o) C
step intersect OA at C and OA’ at C'. \\\\\\\\\\K\\



- By choice of [, we know that |B’C’|<|B’B”|, therefore |A’C’|<|A’B”|.

AICI AIBII
- Deduce . ,l < | ,|.
oAl " |oA’|
- By construction, we know that |0C|>=|OB|, therefore |AC|=|AB|.
AC| _ |AB
- Deduce £ > 1421
04| ~ |0A|
. AB A'B" AC Alc’
- By assumption, L ¥ Deduce 24 > #
04| |0A] oAl ~ 04|
AC Alc’
- By Thales Theorem, lacl _ 4
loal |04/
- Contradiction.
. : . 0A oA’ AA'
Exercise. Prove claim 2 of the theorem, i. e. o4 _ | ,l = ,l.
|oB|  |0B’|  |BB’|

Hint: draw line B’B” parallel to OB and apply the claim 1 proven above to the
obtained segments on the angle OA’A.

Heuristic Alternate Proof of Theorem 2

claim 1
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Due to heights of equal length (CA- | BD) we have
|ACDA| = [ACBA|and therefore |ASCB| = |ASDA| This yields

IASCA|  |ASCA|  |ASCA|  |ASCA|
[ACDA| ~ |ACBA|yq |[ASDA| ~ |ASCBH|
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Plugging in the actual formula for triangle areas (22291

ISC| |AFI _ ISAl |EC| 5 ISC| |AF| _ |SA| |EC|
lcD| |AF| ~ |AB| |Ec|’‘|SD| |AF| ~ |SB| |EC|

transforms that into

Cancelling the common factors results in:

Iscl _ 1S4l Iscl _ Is4l
(@) co| — jas| 2" ( )|SD| ~IsBl

ISAIISD|  |SBISC]
Now use (b) to replace | S4| and | SC| in (a): ||CSII)3|| = Ifgll
IsD| _ ISB|
Using (b) again this simplifies to: (¢) — b| = 14B]

claim 2

Draw an additional parallel to SDthrough A. This parallel intersects 5D
ISA| __ |DG|

in G. Then you have | AC| = | DG | and due to claim 1 — SB| — |5D| and
therefore SAl = Al
ISB| ~ |BD|

claim 3
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Assume ACand BDare not parallel. Then the parallel line to AC
through Dintersects S4in By # B, Since | SB|:| SA|=|SD|:| SC|is
true, we have

5| = 12114l
o 1sc
and on the other hand from claim 2 we have
|SBy| = %. So B and B,, are on the same side of Sand have the

same distance to .5, which means B = B,,. This is a contradiction, so the
assumption could not have been true, which means ACand BD are
indeed parallel [

claim 4

Can be shown by applying the intercept theorem for 2 lines.
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Related Concepts

Parallel Lines in Triangles and Trapezoids

The intercept theorem can be used to prove that a certain construction yields
a parallel line (segment).

If the midpoints of 2 triangle sides are If the midpoints of 2 the non parallel

connected then the resulting line sides of a trapezoid are connected, then
segment is parallel to the 3rd triangle the resulting line segment is parallel to
side. the other 2 sides of the trapezoid.

() H |

Similarity and similar Triangles

A B A B’ A=A B B’

Arranging 2 similar triangles, so that the intercept theorem can be applied

The intercept theorem is closely related to similarity. In fact it is equivalent to
the concept of similar triangles, i.e. it can be used to prove the properties of
similar triangles and similar triangles can be used to prove the intercept
theorem. By matching identical angles you can always place 2 similar triangles
in one another, so that you get the configuration in which the intercepts

applies and vice versa the intercept theorem configuration contains always 2
similar triangles.


http://en.wikipedia.org/wiki/Similarity_(geometry)
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Algebraic formulation of Compass and Ruler Constructions

There are 3 famous problems in elementary geometry, which were posed by
the Greek in terms of Compass and straightedge constructions.

1. Trisecting the angle
2. Doubling the cube
3. Squaring the circle

Their solution took more than 2000 years until all 3 of them finally were
settled in the 19th century using algebraic methods that had become available
during that period of time. In order to reformulate them in algebraic terms
using field extensions, one needs to match field operations with compass and
straightedge constructions. In particular it is important to assure that for 2
given line segments, a new line segment can be constructed such that its
length equals the product of lengths of the other two. Similarly one needs to
be able to construct, for a line segment of length d, a new line segment of
length d—1. The intercept theorem can be used to show that in both cases the
construction is possible.

Construction of a product Construction of an Inverse

Dividing a line segment in a given ratio
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http://en.wikipedia.org/wiki/Trisecting_the_angle
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To divide an arbitrary line segment
ABin a m:nratio you draw an
arbitrary angle in A with ABas one
leg. One other leg you construct m +
n equidistant points, then you draw
line through the last point and B and
parallel line through the mth point.
This parallel line divides ABin the
desired ratio. The graphic to the right .
sh_ows the partition of a line sgement A B
ABin a 5:3 ratio.

-

Applications to Measuring/Survey

Height of the Cheops Pyramid
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Figures illustrate measuring pieces and computing C and D

According to some historical sources the Greek mathematician Thales applied
the intercept theorem to determine the height of the Cheops' pyramid. The
following description illustrates the use of the intercept theorem to compute
the height of the Cheops' pyramid, it does however not recount Thales'
original work, which was lost.

He measured length of the pyramid's base and the height of his pole. Then at
the same time of the day he measured the length pyramid's shadow and the
length of the pole's shadow. This yields him the following data to work with:

o height of the pole (A): 1.63m
« shadow of the pole (B): 2Zm
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 length of the pyramid base: 230m
« shadow of the pyramid: 65m

From this he computed

230
C = 65m + = = 180m
Knowing A,B and C he was now able to apply the intercept theorem to

compute

- A ~ 1.63m- 180m
B 2m

D= = 146.7m

Measuring the Width of a River

The intercept theorem
can be used determine a
distance that cannot be
measured directly, such
as the width of a river or
a lake, tall buildings or
similar. The graphic to
right illustrates the
measuring of the width
of ariver. The segments
|CF|,|CA|,|FE| are
measured and used to

|AC||FE|

compute the wanted distance |AB| = T
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