
May 23, 2021 

Algebra.  

Recap: Elements of Set Theory.  

Arrangements and Derangements. 

Arrangements of a subset of 𝑘 distinct objects chosen from a set of 𝑛 distinct 

objects are 𝐴𝑛
𝑘 =

𝑛!

( 𝑛−𝑘)!
 permutations [order matters] of distinct subsets of 𝑘 

elements chosen from that set. The total number of arrangements of all 
subsets of a set of 𝑛 distinct objects is the number of unique sequences [order 
matters] that can be formed from any subset of 0 ≤ 𝑘 ≤  𝑛 objects of the set,  
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This number is obviously larger than the number of permutations of 𝑛 distinct 
objects given by 𝑛!. Hence, a supfactorial, ¡ 𝑛,  notation has been suggested. It 
is easy to check that ¡ 𝑛  satisfies the following recurrence relation, 

¡ 𝑛 = 𝑛 ∙¡ (𝑛 − 1) + 1 

For very large 𝑛 ≫ 1, the supfactorial is nearly a constant times the factorial, 
¡ 𝑛 ≈ 𝑒 ∙ 𝑛! 

Exercise. How many possible passwords can be composed using an alphabet 
of 𝑛 = 26 letters, if a password is required to have at least 8 characters and 

have no repeating characters? Answer: 𝑎26 − 𝑎7 = 26! ∑
1

𝑘!

26
𝑘=8 .  

A (complete) derangement is a permutation of the elements of a set of distinct 
objects such that none of the objects appear in their original position. The 
number of derangements of a set of 𝑛 distinct objects (or permutations of 𝑛 
distinct objects with no rencontres, or permutations with no fixed point) is 
smaller than 𝑛! and is called the subfactorial, ! 𝑛. It can be obtained by using 
the inclusion-exclusion principle. The universal set of permutations 𝑃 has 𝑛! 
elements. Denote 𝑃1 the subset of permutations that keep element 1 in its 
place, 𝑃2 those that keep element 2 in its place, 𝑃𝑘 that keep element 𝑘 in its 



place, and so on. The set of permutations that keep at least 1 element in its 
original place is then, 𝑃>1 = 𝑃1 ⋃ 𝑃2 ⋃ 𝑃3 … ⋃ 𝑃𝑛. The number of derangement 
is given by the number of elements complementing this set to 𝑃, 
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Using the fact that |𝑃𝑖|, |𝑃𝑖𝑃𝑗|, |𝑃𝑖𝑃𝑗𝑃𝑙|, … are equal to (𝑛 − 1)!, (𝑛 − 2)!, (𝑛 −

3)!, …, correspondingly, for every choice of 𝑖, {𝑖, 𝑗}, {𝑖, 𝑗, 𝑙}, … and there are 
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The number of derangements also obeys the following recursion relations, 

𝑑𝑛 = 𝑛 ∙ 𝑑𝑛−1 + (−1)𝑛, or, ! 𝑛 = 𝑛 ∙ ! (𝑛 − 1) + (−1)𝑛, and,  

𝑑𝑛 = (𝑛 − 1) ∙ (𝑑𝑛−1 + 𝑑𝑛−2), or, ! 𝑛 = (𝑛 − 1) ∙ (! (𝑛 − 1) + ! (𝑛 − 2)). 

Note that the latter recursion formula also holds for 𝑛!; for very large 𝑛 ≫ 1, 

the subfactorial is nearly a factorial divided by a constant, ! 𝑛 ≈
𝑛!

𝑒
. Starting 

with 𝑛 = 0, the numbers of derangements of 𝑛 are, 

1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 
2290792932, ... 

Exercise. A group of 𝑛 men enter a restaurant and check their hats. The hat-
checker is absent minded, and upon leaving, redistributes the hats back to the 
men at random. What is the probability, 𝑃𝑛, that no man gets his correct hat?  

This is the old hats problem, which goes by many names. It was originally 
proposed by French mathematician P. R. de Montmort in 1708, and solved by 



him in 1713. At about the same time it was also solved by Nicholas Bernoulli 
using inclusion-exclusion principle.  

An alternative solution is to devise a recurrence by noting that for a full 
derangement, every of 𝑛 men should get somebody else’s hat. Assume man 𝑥 
got the hat of man 𝑦. Assuming that man 𝑦 got the hat of man 𝑥, there are 𝑑𝑛−2 
such possible derangements. However, we also must account for the 
possibility that man 𝑦, whose hat went to man 𝑥, did not get “his” hat of man 𝑥 
in return. This gets us to the situation of the full derangement for 𝑛 − 1 men. 
Adding the two possibilities and multiplying with 𝑛 − 1 possible choices of 
man 𝑦 we obtain, 𝑑𝑛 = (𝑛 − 1)(𝑑𝑛−1 + 𝑑𝑛−2). For the probability we then 

obtain, or, 𝑃𝑛 =
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the derangement probability can be derived by setting up a “telescoping” sum, 
using (𝑃1 = 0, 𝑃0 = 1), 
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If some, but not necessarily all, of the items are not in their original ordered 
positions, the configuration can be referred to as a partial derangement. The 
number of partial derangements with 𝑘 fixed points (rencontres) is,  
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Here is the beginning of this array. 

𝒏 𝒌⁄  0 1 2 3 4 5 6 7 

0 1        

1 0 1       

2 1 0 1      

3 2 3 0 1     

4 9 8 6 0 1    

5 44 45 20 10 0 1   

6 265 264 135 40 15 0 1  

7 1854 1855 924 315 70 21 0 1 

  



Some homework problems. 

Exercise. Verify the following recurrences for the number of arrangements, 
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Solution. 
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Homework for January 7, 2018.  

1. Using the inclusion-exclusion principle, find how many natural numbers 
𝑛 < 100 are not divisible by 3, 5 or 7. 

Solution. For 𝑛 < 100, there are 33 divisible by 3, |𝐴3| = 33, 19 divisible by 5, 
|𝐴5| = 19, 14 numbers divisible by 7, |𝐴7| = 14. Also, there are 6 numbers 
divisible by 3 ∙ 5 = 15, 4 divisible by 3 ∙ 7 = 21, 2 divisible by 5 ∙ 7 = 35, and 
none divisible by 3 ∙ 5 ∙ 7 = 105. Hence, the answer is 99 − |𝐴3 + 𝐴5 + 𝐴7| =
99 − |𝐴3| − |𝐴5| − |𝐴7| + |𝐴3∙5| − |𝐴3∙7| − |𝐴5∙7| = 99 − (33 + 19 + 14 − 6 −
4 − 2 + 0) = 99 − 54 = 45.  

2. Four letters 𝑎, 𝑏, 𝑐, 𝑑, are written down in random order. Using the 
inclusion-exclusion principle, find probability that at least one letter will 
occupy its alphabetically ordered place? What is the probability for five 
letters?  

3. Using the inclusion-exclusion principle, find the probability that if we 
randomly write a row of digits from 0 to 9, no digit will appear in its proper 
ordered position.  

4. Secretary prepared 5 different letters to be sent to 5 different addresses. 
For each letter, she prepared an envelope with its correct address. If the 5 
letters are to be put into the 5 envelopes at random, what is the probability 
that  

a. no letter will be put into the envelope with its correct address? 



b. only 1 letter will be put into the envelope with its correct address? 
c. only 2 letters will be put into the envelope with its correct address? 
d. only 3 letters will be put into the envelope with its correct address?  
e. only 4 letters will be put into the envelope with its correct address? 
f. all 5 letters will be put into the envelope with its correct address? 

5. Among 24 students in a class, 14 study mathematics, 10 study science, and 
8 study French. Also, 6 study mathematics and science, 5 study 
mathematics and French, and 4 study science and French. We know that 3 
students study all three subjects. How many of these students study none 
of the three subjects? 

6. In a survey on the students’ chewing gum preferences, it was found that 
a. 20 like juicy fruit. 
b. 25 like spearmint. 
c. 33 like watermelon. 
d. 12 like spearmint and juicy fruit. 
e. 16 like juicy fruit and watermelon. 
f. 20 like spearmint and watermelon. 
g. 5 like all three flavors.  
h. 4 like none. 

How many students were surveyed? 

7. * If 9 dies are rolled, what is the probability that all 6 numbers appear? 

Solution. The universal set I consists of 69 outcomes of rolling six dies. Denote 
𝐴𝑛 set of outcomes where one of the six numbers, 𝑛 = 1,2, … ,6, does not 
appear (𝐴1 is a set of outcomes where number 1 does not appear, and so on). 
There are six ways of choosing which number does not appear, so there are 
six such sets, 𝐴1, 𝐴2, … , 𝐴6. For every number, there are 59 outcomes where it 

does not appear, so ∀𝑛, | 𝐴𝑛| = 59. We thus have (1
6
) ⋅ 59 outcomes where one 

of the digits does not appear. However, this over-counts by counting twice the 
outcomes where two digits do not appear, i.e. counting twice all possible 

pairwise intersections, 𝐴1 ∩  𝐴2, 𝐴1 ∩  𝐴3, 𝐴2 ∩  𝐴3, …. There are (2
6
) such 

pairwise intersections and each contains 49 outcomes where only 4 numbers 

appear. Now, however, we have over-subtracted the (3
6
) triple intersections, 

each containing 39 outcomes where only 3 digits appear, and so on. Then, the 
number of outcomes where one of the digits does not appear is, |𝐴| =

(1
6
) ⋅ 59 − (2

6
) ⋅ 49 + (3

6
) ⋅ 39 − (4

6
) ⋅ 29 + (5

6
) ⋅ 19. The probability is obtained by 



dividing by |𝐼| = 69, 𝑃 =|A|/|I|. This is the same as using inclusion-exclusion 
principle. We need to find |𝐴1⋃𝐴2⋃ … ⋃𝐴6|,  

|𝐴| = |𝐴1 + 𝐴2 + ⋯ + 𝐴6| = ∑|𝐴𝑖|
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+ ∑ |𝐴𝑖𝐴𝑗𝐴𝑘|
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− ⋯ 

8. * How many permutations of the 26 letters of English alphabet do not 
contain any of the words pin, fork, or rope?  

 


