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Geometry.  

Ellipse. Hyperbola. Parabola (continued).  

Alternate definitions of ellipse, hyperbola and parabola: Tangent circles.  

Ellipse is the locus of centers of all circles 
tangent to two given nested circles (𝐹1, 𝑅) and 
(𝐹2, 𝑟). Its foci are the centers of these given 
circles, 𝐹1 and 𝐹2, and the major axis equals the 
sum of the radii of the two circles, 2𝑎 =  𝑅 + 𝑟 
(if circles are externally tangential to both given 
circles, as shown in the figure), or the difference 
of their radii (if circles contain smaller circle 
(𝐹2, 𝑟).). 

Consider circles (𝐹1, 𝑅)  and (𝐹2, 𝑟). that are not 
nested. Then the loci of the centers O of circles 
externally tangent to these two satisfy |𝑂𝐹1|  −
 |𝑂 𝐹2|  =  𝑅 −  𝑟. 

Hyperbola is the locus of the centers of circles 
tangent to two given non-nested circles. Its foci 
are the centers of these given circles, and the 
vertex distance 2𝑎 equals the difference in radii 
of the two circles.  

As a special case, one given circle may be a point located at one focus; since a 
point may be considered as a circle of zero radius, the other given circle—
which is centered on the other focus—must have radius 2𝑎. This provides a 
simple technique for constructing a hyperbola. It follows from this definition 
that a tangent line to the hyperbola at a point 𝑃 bisects the angle formed with 
the two foci, i.e., the angle F1PF2. Consequently, the feet of perpendiculars 
drawn from each focus to such a tangent line lies on a circle of radius 𝑎 that is 
centered on the hyperbola's own center.  
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If the radius of one of the given circles is zero, then it shrinks to a point, and if 
the radius of the other given circle becomes infinitely large, then the “circle” 
becomes just a straight line. 

Parabola is the locus of the centers of circles passing through a given point 
and tangent to a given line. The point is the focus of the parabola, and the line 
is the directrix.  

Alternate definitions of ellipse, hyperbola and parabola: Directrix and Focus. 

Parabola is the locus of points such that the ratio of the distance to a given 
point (focus) and a given line (directrix) equals 1.  

Ellipse can be defined as the locus of points P for which the distance to a given 
point (focus F2) is a constant fraction of the perpendicular distance to a given 
line, called the directrix, |𝑃𝐹2|/|𝑃𝐷|  =  𝑒 < 1. 

Hyperbola can also be defined as 
the locus of points for which the 
ratio of the distances to one focus 
and to a line (called the directrix) 
is a constant e. However, for a 
hyperbola it is larger than 1, 
|𝑃𝐹2|/|𝑃𝐷|  =  𝑒 >  1. This 
constant is the eccentricity of the 
hyperbola. By symmetry a 
hyperbola has two directrices, 
which are parallel to the conjugate 
axis and are between it and the tangent to the hyperbola at a vertex.  

In order to show that the above definitions indeed those of an ellipse and a 
hyperbola, let us obtain relation between the x and y coordinates of a point P 
(𝑥, 𝑦) satisfying the definition. Using axes shown in the Figure, with focus F2 
on the X axis at a distance l from the origin and choosing the Y-axis for the 
directrix, we have 

√(𝑥 − 𝑙)2 + 𝑦2

𝑥
= 𝑒 

(𝑥 − 𝑙)2 + 𝑦2 = (𝑒𝑥)2 

F1 F2

-a

P

O

D

f a

b

-f d

P

PF  +PF21 =2a e=f/a
0<e<1

e=PF /PD2
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Finally, we thus obtain, 

(𝑥 −
𝑙

1 − 𝑒2)2

𝑒2𝑙2

(1 − 𝑒2)2

+
𝑦2

𝑒2𝑙2

1 − 𝑒2

= 1 

Which is the equation of an ellipse for 1 − 𝑒2 > 0 and of a hyperbola for 1 −

𝑒2 < 0. In each case the center is at 𝑥 = 𝑥0 =
𝑙

1−𝑒2
 and 𝑦 = 𝑦0 = 0, and the 

semi-axes are 𝑎 =
𝑒  𝑙 

(1−𝑒2) 
 and 𝑏 =

𝑒  𝑙 

√|1−𝑒2|
, which brings the equation to a 

canonical form,  
(𝑥 − 𝑥0)2

𝑎2
±

(𝑦 − 𝑦0)2

𝑏2
= 1 

We also obtain the following relations between the eccentricity e and the ratio 

of the semi-axes, a/b:  
𝑏

𝑎
= √|1 − 𝑒2|, or, 𝑒 = √1 ± (

𝑏

𝑎
)

2
, where plus and minus 

sign correspond to the case of a hyperbola and an ellipse, respectively.  

Curves of the second degree. 

A curve of the second degree is a set of points whose coordinates in some (and 
therefore in any) Cartesian coordinate system satisfy a second order equation, 

𝑎11𝑥2 + 𝑎12𝑥𝑦 + 𝑎22𝑥2 + 2𝑏1𝑥 + 2𝑏2𝑦 + 𝑐 = 0 

  



Curves of the second degree. The optical property. 

Fermat principle and the mirror reflection. If a ray of 
light is reflected in a mirror, then the reflection angle 
equals the incidence angle. This follows from the 
Fermat principle, which states that the light always 
travels along the shortest path. It is clear from the 
Figure that of all reflection points 𝑃 on the line 𝑙 
(mirror) the shortest path between points 𝐹1 and 𝐹2 
on the same side of it is such that points 𝐹1, 𝑃, and the 
reflection of 𝐹2 in 𝑙, 𝐹2′, lie on a straight line. 

The interior and exterior points of an ellipse. The 
sum of the distances from any point inside the ellipse 
to the foci is less, and from any point outside the 
ellipse is greater, than the length of the major axis.  

Proof. Let 𝑋 be a point inside an ellipse with foci 𝐹1, 
𝐹2. Using the triangle inequality, |𝑋𝐹2| < |𝑋𝑌| +
|𝑌𝐹2|, we obtain, |𝐹1𝑋| + |𝑋𝐹2| < |𝐹1𝑋| + |𝑋𝑌| +
|𝑌𝐹2| = |𝐹1𝑌| + |𝑌𝐹2|. Similarly, if 𝑋 is outside an 
ellipse, |𝐹1𝑋| + |𝑋𝐹2| = |𝐹1𝑋| + |𝑋𝑌| + |𝑌𝐹2| > |𝐹1𝑌| + |𝑌𝐹2|.  

The optical property of the ellipse. A light ray 
passing through one focus of an elliptical mirror will 
pass through another focus upon reflection.  

Proof. Suppose a line 𝑙 is tangent to an ellipse at a 
point 𝑃. Then, 𝑙 is the bisector of the exterior angle 
𝐹1𝑃𝐹2 (and its perpendicular at point 𝑃 is the 
bisector of 𝐹1𝑃𝐹2). Let 𝑋 be an arbitrary point of 𝑙 
different from 𝑃. Since 𝑋 is outside the ellipse, we 
have |𝐹1𝑋| + |𝑋𝐹2| > |𝐹1𝑃| + |𝑃𝐹2|, i.e., of all the 
points of 𝑙 the point 𝑃 has the smallest sum of the distances to 𝐹1 and 𝐹2. This 
means that the angles formed by the lines 𝑃𝐹1 and 𝑃𝐹2 with 𝑙 are equal.  

 

 



The interior and exterior points of a parabola. For 
the points inside a parabola the distance to the 
focus is less than the distance to the directrix, and 
for the points outside the parabola the opposite is 
true (see figure).  

Proof. Let 𝑋 be a point inside a parabola with focus 
𝐹 and directrix 𝑙, and let 𝑌 be the projection of 
point 𝑋 on the directrix, i.e. a foot of the perpendicular to 𝑙 from 𝑋, and this 
perpendicular intersects parabola at a point 𝑍 (see figure). Using the 
definition of a parabola, |𝐹𝑍| = |𝑍𝑌|,  and the triangle inequality, |𝐹𝑍| >
|𝐹𝑋| − |𝑋𝑍|  we obtain, |𝐹𝑍| = |𝑍𝑌| > |𝐹𝑋| − |𝑋𝑍|, or, |𝑋𝑌| > |𝐹𝑋|. Similarly, 
if 𝑋 is outside a parabola, |𝐹𝑍| < |𝐹𝑋| + |𝑋𝑍|, and, |𝐹𝑍| = |𝑍𝑌| < |𝐹𝑋| + |𝑋𝑍|, 
or, |𝑋𝑌| = |𝑍𝑌| − |𝑋𝑍| < |𝐹𝑋|.  

The optical property of the parabola. If a point light 
source, such as a small light bulb, is placed in the 
focus of a parabolic mirror, the reflected light forms 
plane-parallel beam perpendicular to the directrix 
(this is the principle used in spotlights). In other 
words, a light ray passing through one focus of a 
parabolic mirror upon reflection in such mirror will 
be perpendicular to the directrix of the parabola.  

Proof. Suppose a line 𝑙 is tangent to a parabola at a 
point 𝑃. Let 𝑃′ be the projection of 𝑃 to the directrix. Then, 𝑙 is the bisector of 
the angle 𝐹𝑃𝑃′ (see figure). Indeed, let point 𝑃 belong to a parabola and 𝑙′ be a 
bisector of the angle 𝐹𝑃𝑃′, where |𝑃𝑃′| is the distance to the directrix 𝑙. Then, 
for any point 𝑄 on 𝑙′, |𝐹𝑄|  =  |𝑄𝑃′|  ≥  |𝑄𝑄′|. Hence, all points 𝑄 on 𝑙, except 
for 𝑄 =  𝑃, are outside the parabola, so 𝑙′ is tangent to the parabola at point 𝑃.  

Exercise. Consider the following problem. Given two lines, 𝑙 and 𝑙′, and a point 
𝐹 not on any of those lines, find point 𝑃 on 𝑙 such that the (signed) difference 
of distances from it to 𝑙′ and 𝐹, |𝑃′𝐿′|  − |𝑃′𝐹|, is maximal. 
As seen in the figure, for any 𝑃′ on 𝑙 the distance to 𝑙′, 
|𝑃′𝐿′|  ≤  |𝑃′𝐿|  ≤  |𝑃′𝐹|  + |𝐹𝐿|, where |𝐹𝐿| is the 
distance from 𝐹 to 𝑙′. Hence, |𝑃′𝐿′|  − |𝑃′𝐹|  ≤  |𝐹𝐿|, and 
the difference is largest (= |𝐹𝐿|) when point 𝑃 belongs to 
the perpendicular 𝐹𝐿 from point 𝐹 to 𝑙′.  
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The interior and exterior points of a hyperbola. Let 𝑑 
be the difference of the distances from any point on the 
hyperbola to the foci 𝐹1 and 𝐹2 and let 𝛤 be the branch 
of the hyperbola inside which 𝐹1 lies. Then, for any 
point 𝑋 inside (outside) 𝛤, the quantity |𝑋𝐹2| − |𝑋𝐹1|  
is greater (less) than 𝑑 (see figure).  

Proof. Let 𝑋 be a point inside the branch 𝛤 be of the 
hyperbola with the foci 𝐹1 and 𝐹2 and let 𝑌 be the 
intersection of the line 𝑋𝐹2 with the branch 𝛤. Using the definition of a 
hyperbola, |𝑌𝐹2| − |𝑌𝐹1| = 𝑑,  and the triangle inequality, |𝑋𝐹1| < |𝑋𝑌| +
|𝑌𝐹1|  we obtain, |𝑋𝐹2| − |𝑋𝐹1| > |𝑋𝐹2| − |𝑋𝑌| − |𝑌𝐹1| = |𝑌𝐹2| − |𝑌𝐹1| = 𝑑  , 
or, |𝑋𝐹2| − |𝑋𝐹1| > |𝑌𝐹2| − |𝑌𝐹1| = 𝑑. Similarly, if 𝑋 is outside the branch 𝛤 of 
a hyperbola, |𝑋𝐹1| > |𝑌𝐹1| − |𝑋𝑌|, so |𝑋𝐹2| − |𝑋𝐹1| < |𝑌𝐹2| − |𝑌𝐹1| = 𝑑.  

The optical property of the hyperbola. Suppose a line 𝑙 is tangent to a 
hyperbola at a point 𝑃; then 𝑙 is the bisector of the angle 𝐹1𝑃𝐹2, where 𝐹1 and 
𝐹2 are the foci of the hyperbola (see figure). In other 
words, light ray passing through a focus, 𝐹1, of a 
parabolic mirror upon reflection in such mirror will 
pass along the line that contains the other focus, 𝐹2. 

Proof. Let point 𝑃 belong to a hyperbola with the foci 𝐹1 
and 𝐹2,  and line 𝑙′ be a bisector of the angle 𝐹1𝑃𝐹2. Let 
𝐹1′ be the reflection of 𝐹1 in 𝑙′. Then, for any point 𝑄 on 
𝑙′, |𝑄𝐹1|  =  |𝑄𝐹1′|, and |𝑄𝐹2| − |𝑄𝐹1| = |𝑄𝐹2| −
 |𝑄𝐹1

′| ≤  |𝐹2𝐹1
′| = |𝑃𝐹2| − |𝑃𝐹1| = 𝑑, again by the 

triangle inequality. Hence, all points 𝑄 on 𝑙′, except for 𝑄 =  𝑃, are in-between 
the branches of the hyperbola, so l’ is tangent to the hyperbola at point 𝑃.  

Exercise. Consider the following problem. Given line 𝑙 and 
points 𝐹1 and 𝐹2 lying on different sides of it, find point 𝑃 
on the line 𝑙 such that the absolute value of the difference 
in distances from 𝑃 to points 𝐹1 and 𝐹2 is maximal. As 
above, let 𝐹2′ be the reflection of 𝐹2 in 𝑙. Then for any 
point 𝑋 on 𝑙, |𝑋𝐹2| − |𝑋𝐹1

′| ≤  |𝐹1𝐹2
′|.  

  



Curves of the second degree around us.  

If a light source is placed at one focus of an 
elliptic mirror, all light rays on the plane of the 
ellipse are reflected to the second focus. Since 
no other smooth curve has such a property, it 
can be used as an alternative definition of an 
ellipse. (In the special case of a circle with a 
source at its center all light would be reflected 
back to the center.) If the ellipse is rotated along 
its major axis to produce an ellipsoidal mirror 
(specifically, a prolate spheroid), this property 
will hold for all rays out of the source. Alternatively, a cylindrical mirror with 
elliptical cross-section can be used to focus light from a linear fluorescent 
lamp along a line of the paper; such mirrors are used in some document 
scanners. 3D elliptical mirrors are used in the floating zone furnaces to obtain 
locally high temperature needed for melting of the material for the crystal 
growth.  

Sound waves are reflected in a similar way, so in a large elliptical room a 
person standing at one focus can hear a person standing at the other focus 
remarkably well.  

In the 17th century, Johannes Kepler discovered that the orbits along which 
the planets travel around the Sun are ellipses with the Sun at one focus, in his 
first law of planetary motion.  

Giant hyperbolic mirrors in the Hubble Telescope. 
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