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Algebra.  

Arithmetic and geometric mean inequality: Proof  by induction. 

The arithmetic mean of 𝑛 numbers, {𝑎1, 𝑎2, … , 𝑎𝑛}, is, by definition,  

𝐴𝑛 =
𝑎1+𝑎2+⋯+𝑎𝑛

𝑛
=

1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1         (1) 

The geometric mean of n non-negative numbers, {𝑎𝑛 ≥ 0}, is, by definition, 

𝐺𝑛 = √𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛
𝑛 = √∏ 𝑎𝑖

𝑛
𝑖=1

𝑛        (2) 

Theorem. For any set of 𝑛 non-negative numbers, the arithmetic mean is not 
smaller than the geometric mean, 

𝑎1+𝑎2+⋯+𝑎𝑛

𝑛
≥ √𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛

𝑛         (3) 

The standard proof of this fact by mathematical induction is given below.  

Induction basis. For 𝑛 = 1 the statement is a true equality. We can also easily 
prove that it holds for 𝑛 = 2. Indeed, (𝑎1 + 𝑎2)2 − 4𝑎1𝑎2 = (𝑎1 − 𝑎2)2 ≥ 0

 
⇒ 𝑎1 + 𝑎2 ≥ 2√𝑎1𝑎2. 

Induction hypothesis. Suppose the inequality holds for any set of 𝑛 non-
negative numbers, {𝑎1, 𝑎2, … , 𝑎𝑛}.  

Induction step. We have to prove that the inequality then also holds for any 
set of 𝑛 + 1 non-negative numbers, {𝑎1, 𝑎2, … , 𝑎𝑛+1}.  

Proof. If 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛 = 𝑎𝑛+1, then the equality, 𝐴𝑛+1 = 𝐺𝑛+1, obviously 
holds. If not all numbers are equal, then there is the smallest (smaller than the 
mean) and the largest (larger than the mean). Let these be 𝑎𝑛+1 < 𝐴𝑛+1, and 
𝑎𝑛 > 𝐴𝑛+1. Consider new sequence of 𝑛 non-negative numbers, 
{𝑎1, 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛 + 𝑎𝑛+1 − 𝐴𝑛+1}. The arithmetic mean for these 𝑛 numbers 
is still equal to 𝐴𝑛+1,  

𝑎1+𝑎2+⋯+𝑎𝑛−1+𝑎𝑛+𝑎𝑛+1−𝐴𝑛+1

𝑛
=

𝑛+1

𝑛
𝐴𝑛+1 −

1

𝑛
𝐴𝑛+1 = 𝐴𝑛+1   (4) 



Therefore, by induction hypothesis, 

(𝐴𝑛+1)𝑛 ≥ 𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛−1 ∙ (𝑎𝑛 + 𝑎𝑛+1 − 𝐴𝑛+1)    (5) 

(𝐴𝑛+1)𝑛+1 ≥ 𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛−1 ∙ (𝑎𝑛 + 𝑎𝑛+1 − 𝐴𝑛+1) ∙ 𝐴𝑛+1   (6) 

Wherein, using 𝑎𝑛+1 < 𝐴𝑛+1 and 𝑎𝑛 > 𝐴𝑛+1, as assumed above, we get  
(𝑎𝑛 − 𝐴𝑛+1)(𝐴𝑛+1 − 𝑎𝑛+1) > 0, or,  𝑎𝑛𝑎𝑛+1 < (𝑎𝑛 + 𝑎𝑛+1 − 𝐴𝑛+1)𝐴𝑛+1, so we 
could substitute the last two terms in the product with 𝑎𝑛 ∙ 𝑎𝑛+1, while 
keeping the inequality. This completes the proof. ¤ 

Solutions to some homework problems. 

1. Using mathematical induction, prove that ∀𝑛 ∈ ℕ, 

a. ∑ (2𝑘 − 1)2𝑛
𝑘=1 = 12 + 32 + 52 + ⋯ + (2𝑛 − 1)2 =

4𝑛3−𝑛

3
, 

b.  ∑ (2𝑘)2𝑛
𝑘=1 = 22 + 42 + 62 + ⋯ + (2𝑛)2 =

2𝑛(2𝑛+1)(𝑛+1)

3
 

c. ∑ 𝑘3𝑛
𝑘=1 = 13 + 23 + 33 + ⋯ + 𝑛3 = (1 + 2 + 3 + ⋯ + 𝑛)2 

d. ∑
1

(2𝑘−1)(2𝑘+1)
𝑛
𝑘=1 =

1

1∙3
+

1

3∙5
+

1

5∙7
+ ⋯ +

1

(2𝑛−1)(2𝑛+1)
<

1

2
 

e. ∑
1

(7𝑘−6)(7𝑘+1)
𝑛
𝑘=1 =

1

1∙8
+

1

8∙15
+

1

15∙22
+ ⋯ +

1

(7𝑛−6)(7𝑛+1)
<

1

7
 

f. ∑
1

𝑘

3𝑛+1
𝑘=𝑛+1 =

1

𝑛+1
+

1

𝑛+2
+

1

𝑛+3
+ ⋯ +

1

3𝑛+1
> 1 

Solution of (f)  

Basis: 𝑃1 : ∑
1

𝑘

4
𝑘=2 =

1

2
+

1

3
+

1

4
> 1 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1 : ∑

1

𝑘

3𝑛+4
𝑘=𝑛+2 =

1

𝑛+2
+

1

𝑛+3
+ ⋯ +

1

3𝑛+4
> 1 

Proof: ∑
1

𝑘

3𝑛+4
𝑘=𝑛+2 =

1

𝑛+2
+

1

𝑛+3
+ ⋯ +

1

3𝑛+1
+

1

3𝑛+2
+

1

3𝑛+3
+

1

3𝑛+4
= ∑

1

𝑘

3𝑛+1
𝑘=𝑛+1 +

1

3𝑛+2
+

1

3𝑛+3
+

1

3𝑛+4
−

1

𝑛+1
> 1, because ∑

1

𝑘

3𝑛+1
𝑘=𝑛+1 > 1 by induction assumption, 

and 
1

3𝑛+2
+

1

3𝑛+3
+

1

3𝑛+4
−

1

𝑛+1
=

1

3
(

1

𝑛+
2

3

+
1

𝑛+
4

3

−
2

𝑛+1
) =

1

3
(

2𝑛+2

(𝑛+
2

3
)(𝑛+

4

3
)

−
2

𝑛+1
) ≥

1

3
(

2𝑛+2

(𝑛+1)2
−

2

𝑛+1
) ≥ 0 (here we used the arithmetic-geometric mean inequality, 

√(𝑛 +
2

3
) (𝑛 +

4

3
) ≤

2𝑛+2

2
= 𝑛 + 1).  



2. Prove by mathematical induction that for any natural number 𝑛,  
a. 5𝑛 + 6𝑛 − 1 is divisible by 10 
b. 9𝑛+1 − 8𝑛 − 9 is divisible by 64  

Solution of (b)  

Basis: 𝑃1: 92 − 72 − 9 = 0 is divisible by 64 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1: ∃𝑘 ∈ ℤ, 9𝑛+2 − 8(𝑛 + 1) − 9 = 64𝑘 

Proof: 9𝑛+2 − 8(𝑛 + 1) − 9 = 9 ∙ 9𝑛+1 − 8𝑛 − 17 = 9(9𝑛+1 − 8𝑛 − 9) + 64𝑛 +
64 =  64𝑘 if 𝑃𝑛: ∃𝑘′ ∈ ℤ, 9𝑛+1 − 8𝑛 − 9 = 64𝑘′ 

3. Problems on binomial coefficients, which are defined as,  

𝐶𝑛
𝑘 = 𝐶𝑛𝑘

 = (
𝑛
𝑘

) =
𝑛!

𝑘!( 𝑛−𝑘)!
.  

a. Prove that𝐶𝑛+𝑘
2 + 𝐶𝑛+𝑘+1

2  is a full square 
b. Find 𝑛 satisfying the following equation, 

 𝐶𝑛
𝑛−1 + 𝐶𝑛

𝑛−2 + 𝐶𝑛
𝑛−3 + ⋯ + 𝐶𝑛

𝑛−10 = 1023 

c. Prove that 

𝐶𝑛
1 + 2𝐶𝑛

2 + 3𝐶𝑛
3 + ⋯ + 𝑛𝐶𝑛

𝑛

𝑛
= 2𝑛−1 

Solution of (b)  

𝐶𝑛
𝑛−1 + 𝐶𝑛

𝑛−2 + 𝐶𝑛
𝑛−3 + ⋯ + 𝐶𝑛

𝑛−10 = 𝐶𝑛
1 + 𝐶𝑛

2 + 𝐶𝑛
3 + ⋯ + 𝐶𝑛

10 = 𝐶𝑛
0 + 𝐶𝑛

1 +
𝐶𝑛

2 + 𝐶𝑛
3 + ⋯ + 𝐶𝑛

10 − 1, so, 𝐶𝑛
0 + 𝐶𝑛

1 + 𝐶𝑛
2 + 𝐶𝑛

3 + ⋯ + 𝐶𝑛
10 = 1024 = 210, 

which is satisfied for 𝑛 = 10 thanks to the property of the binomial 
coefficients,  

𝐶𝑛
0 + 𝐶𝑛

1 + 𝐶𝑛
2 + ⋯ + 𝐶𝑛

𝑘 + ⋯ + 𝐶𝑛
𝑛 = (1 + 1)𝑛 = 2𝑛 

Solution of (c)  

𝐶𝑛
1 + 2𝐶𝑛

2 + 3𝐶𝑛
3 + ⋯ + 𝑛𝐶𝑛

𝑛

𝑛
= 𝐶𝑛−1

0 + 𝐶𝑛−1
1 + 𝐶𝑛−1

2 + ⋯ + 𝐶𝑛−1
𝑛−1 = 2𝑛−1 



Recap: Elements of number theory. Eucleadean algorithm and greatest 

common divisor.  

Theorem 1 (division representation). 

∀𝑎, 𝑏 ∈ ℤ, 𝑏 > 0, ∃𝑞, 𝑟 ∈ ℤ, 0 ≤ 𝑟 < 𝑏: 𝑎 = 𝑏𝑞 + 𝑟 

Proof. If a is 𝑎 multiple of 𝑏, then ∃𝑞 ∈ ℤ, 𝑟 = 0 ∶ 𝑎 = 𝑏𝑞 = 𝑏𝑞 + 𝑟. Otherwise, 

if 𝑎 > 0, then  ∃𝑞 > 0 ∈ ℤ ∶ 𝑏𝑞 < 𝑎 < 𝑏(𝑞 + 1), and ∃𝑟 = 𝑎 − 𝑏𝑞 ∈ ℤ ∶ 0 < 𝑟 <

𝑏. If 𝑎 < 0, then  ∃𝑞 < 0 ∈ ℤ ∶ 𝑏(𝑞 − 1) < 𝑎 < 𝑏𝑞, and ∃𝑟 = 𝑎 − 𝑏(𝑞 − 1) ∈ ℤ ∶

0 < 𝑟 < 𝑏, which completes the proof.  

Definition. A number 𝑑 ∈ ℤ is a common divisor of two integer numbers 𝑎, 𝑏 ∈

ℤ, if ∃𝑛, 𝑚 ∈ ℤ: 𝑎 = 𝑛𝑑, 𝑏 = 𝑚𝑑.  

A set of all positive common divisors of the two numbers 𝑎, 𝑏 ∈ ℤ is limited 

because these divisors are smaller than the magnitude of the larger of the two 

numbers. The greatest of the divisors, 𝑑, is called the greatest common divisor 

(𝑔𝑐𝑑) and denoted 𝑑 = (𝑎, 𝑏).  

Definition. Two integers 𝑎, 𝑏 ∈ ℤ, are called relatively prime if they have no 

common divisor larger than 1, i. e. (𝑎, 𝑏) = 1.  

Theorem 2.  ∀𝑎, 𝑏, 𝑞, 𝑟 ∈ ℤ, (𝑎 = 𝑏𝑞 + 𝑟)
 

⇒ ((𝑎, 𝑏) = (𝑏, 𝑟))   

Proof. Indeed, if 𝑑 is a common divisor of 𝑎, 𝑏 ∈ ℤ, then ∃𝑛, 𝑚 ∈ ℤ: 𝑎 = 𝑛𝑑, 𝑏 =

𝑚𝑑
 

⇒ 𝑟 = 𝑎 − 𝑏𝑞 = (𝑛 − 𝑚𝑞)𝑑. Therefore, 𝑑 is also a common divisor of 𝑏 

and 𝑟 = 𝑎 − 𝑏𝑞. Conversely, if 𝑑′ is a common divisor of 𝑏 and 𝑟 = 𝑎 − 𝑏𝑞, 

then ∃𝑛′, 𝑚′ ∈ ℤ: 𝑏 = 𝑚′𝑑′, 𝑎 − 𝑏𝑞 = 𝑛′𝑑′
 

⇒ 𝑎 = (𝑛′ + 𝑚′𝑞)𝑑′, so 𝑑′ is a 

common divisor of 𝑏 and 𝑎. Hence, the statement of the theorem is valid for 

any divisor of 𝑎, 𝑏, and for 𝑔𝑐𝑑 in particular. 

Corollary 1 (Eucleadean algorithm). In order to find the greatest common 

divisor 𝑑 = (𝑎, 𝑏), one proceeds iteratively performing successive divisions, 

𝑎 = 𝑏𝑞 + 𝑟 , (𝑎, 𝑏) = (𝑏, 𝑟 ) 



𝑏 = 𝑟 𝑞1 + 𝑟1, (𝑏, 𝑟 ) = (𝑟 , 𝑟1), 

𝑟 = 𝑟1𝑞2 + 𝑟2, (𝑟 , 𝑟1) = (𝑟1, 𝑟2),  

𝑟1 = 𝑟2𝑞3 + 𝑟3, (𝑟1, 𝑟2) = (𝑟2, 𝑟3), … , 𝑟𝑛−1 = 𝑟𝑛𝑞𝑛+1 

𝑏 > 𝑟1 > 𝑟2 > 𝑟3 > ⋯ 𝑟𝑛 > 0
 

⇒ ∃𝑑 ≤ 𝑏, 𝑑 = 𝑟𝑛 = (𝑎, 𝑏) 

The last positive remainder, 𝑟𝑛, in the sequence {𝑟𝑘} is (𝑎, 𝑏), the 𝑔𝑐𝑑 of the 

numbers 𝑎 and 𝑏. Indeed, the Eucleadean algorithm ensures that 

(𝑎, 𝑏) = (𝑏, 𝑟1) = (𝑟1, 𝑟2) = ⋯ = (𝑟𝑛−1, 𝑟𝑛) = (𝑟𝑛, 0) = 𝑟𝑛 = 𝑑 

Examples.  

a. (385,105) = (105,70) = (70,35) = (35,0) = 35 

b. (513,304) = (304,209) = (209,95) = (95,19) = (19,0) = 19 

Continued fraction representation. Using the Eucleadean algorithm, one can 

develop a continued fraction representation for rational numbers,  

𝑎

𝑏
= 𝑞 +

1

𝑞1 +
1

𝑞2 +
1

…

 +
1

𝑞𝑛 +
1

𝑞𝑛+1

 

This is accomplished by successive substitution, which gives,  

𝑎

𝑏
= 𝑞 +

𝑟 

𝑏
= 𝑞 +

1
𝑏

𝑟 

, 
𝑏

𝑟 
= 𝑞1 +

𝑟1

𝑟 
= 𝑞1 +

1
𝑟 
𝑟1

, 
𝑟

𝑟1 

= 𝑞2 +
1

𝑟1 
𝑟2

,…, 
𝑟𝑛−1

𝑟𝑛
= 𝑞𝑛+1.  

Exercise. Show the continued fraction representations for 
385

105
, 

513

304
, 

105

385
, 

304

513
.  

Example. 
105

385
=

1
385

105

=
1

3+
1

105
70

=
1

3+
1

1+
1

70
35

=
1

3+
1

1+
1
2

.  



Corollary 2 (Diophantian equation). (𝑑 = (𝑎, 𝑏))
 

⇒ (∃ 𝑘, 𝑙 ∈ ℤ ∶ 𝑑 = 𝑘𝑎 + 𝑙𝑏)  

Proof. Consider the sequence of remainders in the Eucleadean algorithm, 𝑟 =

𝑎 − 𝑏𝑞 , 𝑟1 = 𝑏 − 𝑟 𝑞1, 𝑟2 = 𝑟 − 𝑟1𝑞2,  𝑟3 = 𝑟1 
− 𝑟2𝑞3, …, 𝑟𝑛 = 𝑟𝑛−2 − 𝑟𝑛−1𝑞𝑛. 

Indeed, the successive substitution gives, 𝑟 = 𝑎 − 𝑏𝑞 , 𝑟1 = 𝑏 − (𝑎 − 𝑏𝑞 )𝑞1 =

𝑘1𝑎 + 𝑙1𝑏, 𝑟2 = 𝑟 − (𝑘1𝑎 + 𝑙1𝑏)𝑞2 = 𝑘2𝑎 + 𝑙2𝑏, , …, 𝑟𝑛 = 𝑟𝑛−2 − (𝑘𝑛−1𝑎 +

𝑙𝑛−1𝑏)𝑞𝑛 = 𝑘𝑛𝑎 + 𝑙𝑛𝑏 = 𝑑 = (𝑎, 𝑏).  

It follows that if 𝑑 is a common divisor of 𝑎 and 𝑏, then equation 𝑎𝑥 + 𝑏𝑦 = 𝑑, 

called the Diophantian equation, has solution for integer 𝑥, 𝑦 ∈ ℤ.  

Exercise. Find the representation 𝑑 = 𝑘𝑎 + 𝑙𝑏 for the pairs (385,105) and 

(513,304) considered in the above examples.  

Recap: Elements of number theory. Modular arithmetics.  

Definition. For 𝑎, 𝑏, 𝑛 ∈ ℤ, the congruence relation, 𝑎 ≡ 𝑏 mod 𝑛, denotes that, 
𝑎 − 𝑏  is a multiple of 𝑛, or, ∃𝑞 ∈ ℤ, 𝑎 = 𝑛𝑞 + 𝑏.  

All integers congruent to a given number 𝑟 ∈ ℤ with respect to a division by 𝑛 ∈ ℤ 
form congruence classes, [𝑟]𝑛. For example, for 𝑛 = 3, 

[0]3  =  {. . . , −6, −3, 0, 3, 6, . . . } 

[1]3  =  {. . . , −2, 1, 4, 7, . . . } 

[2]3  =  {. . . , −1, 2, 5, 8, . . . } 

[3]3  =  {. . . , −6, −3, 0, 3, 6, . . . } = [0]3 

There are exactly 𝑛 congruence classes mod 𝑛, forming set 𝑍𝑛 . In the above 
example 𝑛 = 3, the set of equivalence classes is 𝑍3 = {[0]3, [1]3, [2]3}. For 
general 𝑛, the set is 𝑍𝑛 = {[0]𝑛 , [1]𝑛, … , [𝑛 − 1]𝑛}, because [𝑛]𝑛 = [0]𝑛.  

One can define addition and multiplication in 𝑍𝑛 in the usual way,  

[𝑎]𝑛 + [𝑏]𝑛 = [𝑎 + 𝑏]𝑛 

[𝑎]𝑛 ∙ [𝑏]𝑛 = [𝑎 ∙ 𝑏]𝑛 



([𝑎]𝑛)𝑝 = [𝑎𝑝]𝑛, 𝑝 ∈ ℕ 

Here the last relation for power follows from the definition of multiplication.  

Exercise. Check that so defined operations do not depend on the choice of 
representatives 𝑎, 𝑏 in each equivalence class.  

Exercise. Check that so defined operations of addition and multiplication 
satisfy all the usual rules: associativity, commutativity, distributivity.  

In general, however, it is impossible to define division in the usual way: for 
example, [2]6 ∙ [3]6 = [6]6 = [0]6, but one cannot divide both sides by [3]6 to 
obtain [2]6 = [0]6. In other words, for general 𝑛 an element [𝑎]𝑛 of 𝑍𝑛 could 
give [0]𝑛 upon multiplication by some of the elements in 𝑍𝑛 and therefore would 
not have properties of an algebraic inverse, so there may exist elements in 𝑍𝑛  
which do not have inverse. In practice, this means that if we try to define an 
inverse element, [𝑟−1]𝑛 , to an element [𝑟]𝑛 employing the usual relation,  
[𝑟]𝑛 ∙ [𝑟−1]𝑛 = [1]𝑛, there might be no element [𝑟−1]𝑛 in class 𝑍𝑛  satisfying this 
equation. However, it is possible to define the inverse for some special values 
of 𝑟 and 𝑛. The corresponding classes [𝑟]𝑛 are called invertible in 𝑍𝑛 .  

Definition. The congruence class [𝑟]𝑛 ∈ 𝑍𝑛  is called invertible in 𝑍𝑛 , if there exists 
a class [𝑟−1]𝑛 ∈ 𝑍𝑛 , such that [𝑟]𝑛 ∙ [𝑟−1]𝑛 = [1]𝑛. 

Theorem. Congruence class [𝑟]𝑛 ∈ 𝑍𝑛  is invertible in 𝑍𝑛 , if and only if 𝑟 and 𝑛 are 

mutually prime, (𝑟, 𝑛) = 1. Or,  ∀[𝑟]𝑛 , (∃[𝑟−1]𝑛 ∈ 𝑍𝑛)
 

⇔ ((𝑟, 𝑛) = 1).  

To find the inverse of [𝑎] ∈ 𝑍𝑛 , we have to solve the equation, 𝑎𝑥 + 𝑛𝑦 = 1, which 
can be done using Eucleadean algorithm. Then, 𝑎𝑥 ≡ 1 mod 𝑛, and  [𝑎]−1 =  [𝑥]  

.  

Examples.  

3 is invertible mod 10, i. e. in 𝑍10, because [3]10 ∙ [7]10 = [21]10 = [1]10, but is 
not invertible mod 9, i. e. in 𝑍9, because[3]9 ∙ [3]9 = [0]9 .  

7 is invertible in 𝑍15: [7]15 ∙ [13]15 = [91]15 = [1]15, but is not invertible in 𝑍14: 
[7]14 ∙ [2]14 = [14]14 = [0]14.  


