Algebra.

Arithmetic and geometric mean inequality: Proof by induction.

The **arithmetic mean** of *n* numbers, $\{a_1, a_2, ..., a_n\}$, is, by definition,

$$A_n = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{i=1}^n a_i \tag{1}$$

The **geometric mean** of n non-negative numbers, $\{a_n \ge 0\}$, is, by definition,

$$G_n = \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n} = \sqrt[n]{\prod_{i=1}^n a_i}$$
 (2)

Theorem. For any set of n non-negative numbers, the arithmetic mean is not smaller than the geometric mean,

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n} \tag{3}$$

The standard proof of this fact by mathematical induction is given below.

Induction basis. For n=1 the statement is a true equality. We can also easily prove that it holds for n=2. Indeed, $(a_1+a_2)^2-4a_1a_2=(a_1-a_2)^2\geq 0$ $\Rightarrow a_1+a_2\geq 2\sqrt{a_1a_2}$.

Induction hypothesis. Suppose the inequality holds for any set of n nonnegative numbers, $\{a_1, a_2, ..., a_n\}$.

Induction step. We have to prove that the inequality then also holds for any set of n+1 non-negative numbers, $\{a_1, a_2, ..., a_{n+1}\}$.

Proof. If $a_1 = a_2 = \dots = a_n = a_{n+1}$, then the equality, $A_{n+1} = G_{n+1}$, obviously holds. If not all numbers are equal, then there is the smallest (smaller than the mean) and the largest (larger than the mean). Let these be $a_{n+1} < A_{n+1}$, and $a_n > A_{n+1}$. Consider new sequence of n non-negative numbers, $\{a_1, a_2, \dots, a_{n-1}, a_n + a_{n+1} - A_{n+1}\}$. The arithmetic mean for these n numbers is still equal to A_{n+1} ,

$$\frac{a_1 + a_2 + \dots + a_{n-1} + a_n + a_{n+1} - A_{n+1}}{n} = \frac{n+1}{n} A_{n+1} - \frac{1}{n} A_{n+1} = A_{n+1}$$
 (4)

Therefore, by induction hypothesis,

$$(A_{n+1})^n \ge a_1 \cdot a_2 \cdot \dots \cdot a_{n-1} \cdot (a_n + a_{n+1} - A_{n+1})$$
(5)

$$(A_{n+1})^{n+1} \ge a_1 \cdot a_2 \cdot \dots \cdot a_{n-1} \cdot (a_n + a_{n+1} - A_{n+1}) \cdot A_{n+1} \tag{6}$$

Wherein, using $a_{n+1} < A_{n+1}$ and $a_n > A_{n+1}$, as assumed above, we get $(a_n - A_{n+1})(A_{n+1} - a_{n+1}) > 0$, or, $a_n a_{n+1} < (a_n + a_{n+1} - A_{n+1})A_{n+1}$, so we could substitute the last two terms in the product with $a_n \cdot a_{n+1}$, while keeping the inequality. This completes the proof. \square

Solutions to some homework problems.

1. Using mathematical induction, prove that $\forall n \in \mathbb{N}$,

a.
$$\sum_{k=1}^{n} (2k-1)^2 = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{4n^3 - n}{3}$$

b.
$$\sum_{k=1}^{n} (2k)^2 = 2^2 + 4^2 + 6^2 + \dots + (2n)^2 = \frac{2n(2n+1)(n+1)}{3}$$

c.
$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$

d.
$$\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} < \frac{1}{2}$$

e.
$$\sum_{k=1}^{n} \frac{1}{(7k-6)(7k+1)} = \frac{1}{1\cdot 8} + \frac{1}{8\cdot 15} + \frac{1}{15\cdot 22} + \dots + \frac{1}{(7n-6)(7n+1)} < \frac{1}{7}$$

f.
$$\sum_{k=n+1}^{3n+1} \frac{1}{k} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{3n+1} > 1$$

Solution of (f)

Basis:
$$P_1$$
: $\sum_{k=2}^{4} \frac{1}{k} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1$

Induction:
$$P_n \Rightarrow P_{n+1}$$
, where P_{n+1} : $\sum_{k=n+2}^{3n+4} \frac{1}{k} = \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{3n+4} > 1$

Proof:
$$\sum_{k=n+2}^{3n+4} \frac{1}{k} = \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{3n+1} + \frac{1}{3n+2} + \frac{1}{3n+3} + \frac{1}{3n+4} = \sum_{k=n+1}^{3n+1} \frac{1}{k} + \frac{1}{3n+2} + \frac{1}{3n+3} + \frac{1}{3n+4} - \frac{1}{n+1} > 1$$
, because $\sum_{k=n+1}^{3n+1} \frac{1}{k} > 1$ by induction assumption,

and
$$\frac{1}{3n+2} + \frac{1}{3n+3} + \frac{1}{3n+4} - \frac{1}{n+1} = \frac{1}{3} \left(\frac{1}{n+\frac{2}{3}} + \frac{1}{n+\frac{4}{3}} - \frac{2}{n+1} \right) = \frac{1}{3} \left(\frac{2n+2}{\left(n+\frac{2}{3}\right)\left(n+\frac{4}{3}\right)} - \frac{2}{n+1} \right) \ge \frac{1}{3} \left(\frac{2n+2}{n+1} + \frac{1}{3n+3} + \frac{1}{3n+4} - \frac{1}{n+1} + \frac{1}{3n+4} - \frac{2}{n+1} \right)$$

 $\frac{1}{3}\left(\frac{2n+2}{(n+1)^2}-\frac{2}{n+1}\right)\geq 0$ (here we used the arithmetic-geometric mean inequality,

$$\sqrt{\left(n+\frac{2}{3}\right)\left(n+\frac{4}{3}\right)} \le \frac{2n+2}{2} = n+1$$
).

2. Prove by mathematical induction that for any natural number n,

a.
$$5^n + 6^n - 1$$
 is divisible by 10

b.
$$9^{n+1} - 8n - 9$$
 is divisible by 64

Solution of (b)

Basis: P_1 : $9^2 - 72 - 9 = 0$ is divisible by 64

Induction:
$$P_n \Rightarrow P_{n+1}$$
, where P_{n+1} : $\exists k \in \mathbb{Z}, 9^{n+2} - 8(n+1) - 9 = 64k$

Proof:
$$9^{n+2} - 8(n+1) - 9 = 9 \cdot 9^{n+1} - 8n - 17 = 9(9^{n+1} - 8n - 9) + 64n + 64 = 64k$$
 if P_n : $\exists k' \in \mathbb{Z}$, $9^{n+1} - 8n - 9 = 64k'$

3. Problems on binomial coefficients, which are defined as,

$$C_n^k = {}_k C_n = {n \choose k} = \frac{n!}{k!(n-k)!}.$$

- a. Prove that $C_{n+k}^2 + C_{n+k+1}^2$ is a full square
- b. Find *n* satisfying the following equation,

$$C_n^{n-1} + C_n^{n-2} + C_n^{n-3} + \dots + C_n^{n-10} = 1023$$

c. Prove that

$$\frac{C_n^1 + 2C_n^2 + 3C_n^3 + \dots + nC_n^n}{n} = 2^{n-1}$$

Solution of (b)

 $C_n^{n-1} + C_n^{n-2} + C_n^{n-3} + \dots + C_n^{n-10} = C_n^1 + C_n^2 + C_n^3 + \dots + C_n^{10} = C_n^0 + C_n^1 + C_n^2 + C_n^3 + \dots + C_n^{10} - 1$, so, $C_n^0 + C_n^1 + C_n^2 + C_n^3 + \dots + C_n^{10} = 1024 = 2^{10}$, which is satisfied for n = 10 thanks to the property of the binomial coefficients,

$$C_n^0 + C_n^1 + C_n^2 + \dots + C_n^k + \dots + C_n^n = (1+1)^n = 2^n$$

Solution of (c)

$$\frac{C_n^1 + 2C_n^2 + 3C_n^3 + \dots + nC_n^n}{n} = C_{n-1}^0 + C_{n-1}^1 + C_{n-1}^2 + \dots + C_{n-1}^{n-1} = 2^{n-1}$$

Recap: Elements of number theory. Eucleadean algorithm and greatest common divisor.

Theorem 1 (division representation).

$$\forall a, b \in \mathbb{Z}, b > 0, \exists q, r \in \mathbb{Z}, 0 \le r < b : a = bq + r$$

Proof. If a is a multiple of b, then $\exists q \in \mathbb{Z}, r = 0 : a = bq = bq + r$. Otherwise, if a > 0, then $\exists q > 0 \in \mathbb{Z} : bq < a < b(q+1)$, and $\exists r = a - bq \in \mathbb{Z} : 0 < r < b$. If a < 0, then $\exists q < 0 \in \mathbb{Z} : b(q-1) < a < bq$, and $\exists r = a - b(q-1) \in \mathbb{Z} : 0 < r < b$, which completes the proof.

Definition. A number $d \in \mathbb{Z}$ is a common divisor of two integer numbers $a, b \in \mathbb{Z}$, if $\exists n, m \in \mathbb{Z}$: a = nd, b = md.

A set of all positive common divisors of the two numbers $a, b \in \mathbb{Z}$ is limited because these divisors are smaller than the magnitude of the larger of the two numbers. The greatest of the divisors, d, is called the greatest common divisor (gcd) and denoted d = (a, b).

Definition. Two integers $a, b \in \mathbb{Z}$, are called <u>relatively prime</u> if they have no common divisor larger than 1, i. e. (a, b) = 1.

Theorem 2.
$$\forall a, b, q, r \in \mathbb{Z}, (a = bq + r) \Rightarrow ((a, b) = (b, r))$$

Proof. Indeed, if d is a common divisor of $a, b \in \mathbb{Z}$, then $\exists n, m \in \mathbb{Z}$: $a = nd, b = md \Rightarrow r = a - bq = (n - mq)d$. Therefore, d is also a common divisor of b and r = a - bq. Conversely, if d' is a common divisor of b and r = a - bq, then $\exists n', m' \in \mathbb{Z}$: $b = m'd', a - bq = n'd' \Rightarrow a = (n' + m'q)d'$, so d' is a common divisor of b and b. Hence, the statement of the theorem is valid for any divisor of b, and for b and b a

Corollary 1 (Eucleadean algorithm). In order to find the greatest common divisor d = (a, b), one proceeds iteratively performing successive divisions,

$$a = bq + r, (a, b) = (b, r)$$

$$b = rq_1 + r_1, (b, r) = (r, r_1),$$

$$r = r_1q_2 + r_2, (r, r_1) = (r_1, r_2),$$

$$r_1 = r_2q_3 + r_3, (r_1, r_2) = (r_2, r_3), \dots, r_{n-1} = r_nq_{n+1}$$

$$b > r_1 > r_2 > r_3 > \dots r_n > 0 \Rightarrow \exists d \le b, d = r_n = (a, b)$$

The last positive remainder, r_n , in the sequence $\{r_k\}$ is (a, b), the gcd of the numbers a and b. Indeed, the Eucleadean algorithm ensures that

$$(a,b) = (b,r_1) = (r_1,r_2) = \cdots = (r_{n-1},r_n) = (r_n,0) = r_n = d$$

Examples.

a.
$$(385,105) = (105,70) = (70,35) = (35,0) = 35$$

b. $(513,304) = (304,209) = (209,95) = (95,19) = (19,0) = 19$

Continued fraction representation. Using the Eucleadean algorithm, one can develop a continued fraction representation for rational numbers,

$$\frac{a}{b} = q + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{\dots}}} + \frac{1}{q_n + \frac{1}{q_{n+1}}}$$

This is accomplished by successive substitution, which gives,

$$\frac{a}{b} = q + \frac{r}{b} = q + \frac{1}{\frac{b}{r}}, \frac{b}{r} = q_1 + \frac{r_1}{r} = q_1 + \frac{1}{\frac{r}{r_1}}, \frac{r}{r_1} = q_2 + \frac{1}{\frac{r_1}{r_2}}, \dots, \frac{r_{n-1}}{r_n} = q_{n+1}.$$

Exercise. Show the continued fraction representations for $\frac{385}{105}$, $\frac{513}{304}$, $\frac{105}{385}$, $\frac{304}{513}$.

Example.
$$\frac{105}{385} = \frac{1}{\frac{385}{105}} = \frac{1}{3 + \frac{1}{\frac{105}{70}}} = \frac{1}{3 + \frac{1}{1 + \frac{1}{\frac{70}{25}}}} = \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}$$

Corollary 2 (Diophantian equation). $(d = (a, b)) \Rightarrow (\exists k, l \in \mathbb{Z} : d = ka + lb)$

Proof. Consider the sequence of remainders in the Eucleadean algorithm, r=a-bq, $r_1=b-rq_1$, $r_2=r-r_1q_2$, $r_3=r_1-r_2q_3$, ..., $r_n=r_{n-2}-r_{n-1}q_n$. Indeed, the successive substitution gives, r=a-bq, $r_1=b-(a-bq)q_1=k_1a+l_1b$, $r_2=r-(k_1a+l_1b)q_2=k_2a+l_2b$, , ..., $r_n=r_{n-2}-(k_{n-1}a+l_{n-1}b)q_n=k_na+l_nb=d=(a,b)$.

It follows that if d is a common divisor of a and b, then equation ax + by = d, called the Diophantian equation, has solution for integer $x, y \in \mathbb{Z}$.

Exercise. Find the representation d = ka + lb for the pairs (385,105) and (513,304) considered in the above examples.

Recap: Elements of number theory. Modular arithmetics.

Definition. For $a, b, n \in \mathbb{Z}$, the congruence relation, $a \equiv b \mod n$, denotes that, a - b is a multiple of n, or, $\exists q \in \mathbb{Z}$, a = nq + b.

All integers congruent to a given number $r \in \mathbb{Z}$ with respect to a division by $n \in \mathbb{Z}$ form congruence classes, $[r]_n$. For example, for n = 3,

$$[0]_3 = \{\dots, -6, -3, 0, 3, 6, \dots\}$$

$$[1]_3 = \{\dots, -2, 1, 4, 7, \dots\}$$

$$[2]_3 = \{\dots, -1, 2, 5, 8, \dots\}$$

$$[3]_3 = \{\dots, -6, -3, 0, 3, 6, \dots\} = [0]_3$$

There are exactly n congruence classes mod n, forming set Z_n . In the above example n=3, the set of equivalence classes is $Z_3=\{[0]_3,[1]_3,[2]_3\}$. For general n, the set is $Z_n=\{[0]_n,[1]_n,...,[n-1]_n\}$, because $[n]_n=[0]_n$.

One can define addition and multiplication in \mathbb{Z}_n in the usual way,

$$[a]_n + [b]_n = [a+b]_n$$
$$[a]_n \cdot [b]_n = [a \cdot b]_n$$

$$([a]_n)^p = [a^p]_n, p \in \mathbb{N}$$

Here the last relation for power follows from the definition of multiplication.

Exercise. Check that so defined operations do not depend on the choice of representatives a, b in each equivalence class.

Exercise. Check that so defined operations of addition and multiplication satisfy all the usual rules: associativity, commutativity, distributivity.

In general, however, it is impossible to define division in the usual way: for example, $[2]_6 \cdot [3]_6 = [6]_6 = [0]_6$, but one cannot divide both sides by $[3]_6$ to obtain $[2]_6 = [0]_6$. In other words, for general n an element $[a]_n$ of Z_n could give $[0]_n$ upon multiplication by some of the elements in Z_n and therefore would not have properties of an algebraic inverse, so there may exist elements in Z_n which do not have inverse. In practice, this means that if we try to define an inverse element, $[r^{-1}]_n$, to an element $[r]_n$ employing the usual relation, $[r]_n \cdot [r^{-1}]_n = [1]_n$, there might be no element $[r^{-1}]_n$ in class Z_n satisfying this equation. However, it is possible to define the inverse for some special values of r and r. The corresponding classes $[r]_n$ are called invertible in Z_n .

Definition. The congruence class $[r]_n \in Z_n$ is called invertible in Z_n , if there exists a class $[r^{-1}]_n \in Z_n$, such that $[r]_n \cdot [r^{-1}]_n = [1]_n$.

Theorem. Congruence class $[r]_n \in Z_n$ is invertible in Z_n , if and only if r and n are mutually prime, (r, n) = 1. Or, $\forall [r]_n$, $(\exists [r^{-1}]_n \in Z_n) \Leftrightarrow ((r, n) = 1)$.

To find the inverse of $[a] \in Z_n$, we have to solve the equation, ax + ny = 1, which can be done using Eucleadean algorithm. Then, $ax \equiv 1 \mod n$, and $[a]^{-1} = [x]$.

Examples.

3 is invertible mod 10, i. e. in Z_{10} , because $[3]_{10} \cdot [7]_{10} = [21]_{10} = [1]_{10}$, but is not invertible mod 9, i. e. in Z_9 , because $[3]_9 \cdot [3]_9 = [0]_9$.

7 is invertible in Z_{15} : $[7]_{15} \cdot [13]_{15} = [91]_{15} = [1]_{15}$, but is not invertible in Z_{14} : $[7]_{14} \cdot [2]_{14} = [14]_{14} = [0]_{14}$.