MATH 8: HANDOUT 17 **EUCLIDEAN GEOMETRY 5: SIMILAR TRIANGLES.**

15. THALES THEOREM

Theorem 25 (Thales Theorem). Let points A', B' be on the sides of angle $\angle AOB$ as shown in the picture. Then lines AB and A'B' are parallel if and only if

$$\frac{OA}{OB} = \frac{OA'}{OB'}$$

In this case, we also have $\frac{OA}{OB} = \frac{AA'}{BB'}$ We have already seen and proved a special case of this theorem when discussing the midline of a triangle. The proof of this theorem is unexpectedly hard. In the case when $\frac{OA}{OA'}$ is a rational number, one can use arguments similar to those we did when talking about midline. The case of irrational numbers is harder yet. We skip the proof for now; it will be discussed in Math 9.

As an immediate corollary of this theorem, we get the following result.

Theorem 26. Let points A_1, \ldots, A_n and B_1, \ldots, B_n on the sides of an angle be chosen so that $A_1A_2 = A_2A_3 = \cdots = A_{n-1}A_n$, and lines A_1B_1 , A_2B_2 , ... are parallel. Then $B_1B_2 = B_2B_3 = \cdots = B_{n-1}B_n$.

Proof of this theorem is left to you as exercise.

16. SIMILAR TRIANGLES

Definition. Two triangles $\triangle ABC$, $\triangle A'B'C'$ are called *similar* if

$$\angle A \cong \angle A', \quad \angle B \cong \angle B', \quad \angle C \cong \angle C'$$

and the corresponding sides are proportional, i.e.

$$\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}$$

The common ratio $\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}$ is sometimes called the similarity coefficient. There are some similarity tests:

Theorem 27 (AAA similarity test). If the corresponding angles of triangles $\triangle ABC$, $\triangle A'B'C'$ are equal:

$$\angle A \cong \angle A', \quad \angle B \cong \angle B', \quad \angle C \cong \angle C'$$

then the triangles are similar.

Theorem 28 (SSS similarity test). If the corresponding sides of triangles $\triangle ABC$, $\triangle A'B'C'$ are proportional:

$$\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}$$

then the triangles are similar.

Theorem 29 (SAS similarity test). If two pairs of corresponding sides of triangles $\triangle ABC$, $\triangle A'B'C'$ are proportional:

$$\frac{AB}{A'B'} = \frac{AC}{A'C'}$$

and $\angle A \cong \angle A'$ then the triangles are similar.

Proofs of all of these tests can be obtained from Thales theorem.

Homework

- 1. (Angle Theorems) Let's study Inscribed Angle Theorem (Theorem 23 from Handout 16) in a bit more detail!
 - (a) Prove the converse of this theorem: namely, if λ is a circle centered at O and A, B, are on λ, and there is a point C such that m∠ACB = ½m∠AOB, then C lies on λ. [Hint: let C' be the point where line AC intersects λ. Show that then, m∠ACB = m∠AC'B, and show that this implies C = C'.]
 - (b) Let A, B be on circle λ centered at O and m the tangent to λ at A, as shown on the right. Let C be on m such that C is on the same side of \overrightarrow{OA} as B. Prove that $m \angle BAC = \frac{1}{2}m \angle BOA$. [Hint: extend \overrightarrow{OA} to intersect λ at point D so that \overrightarrow{AD} is a diameter of λ . What arc does $\angle DAB$ subtend?]

Consider a circle λ and an angle whose vertex C is outside this circle and both sides intersect this circle at two points as shown in the figure. In this case, intersection of the angle with the circle

2. Here is a modification of Inscribed Angle Theorem.

O

 $C \bullet$

- **3.** Can you suggest and prove an analog of the previous problem, but when the point C is inside the circle (you will need to replace an angle by two intersecting lines, forming a pair of vertical angles)?
- **4.** Prove Theorem 26 (using Thales Theorem). Hint: let $k = \frac{OB_1}{OA_1}$; show that then $B_i B_{i+1} = kA_i A_{i+1}$.
- **5.** Using Theorem 26, describe how one can divide a given segment into 5 equal parts using ruler and compass.
- **6.** Given segments of length a, b, c, construct a segment of length $\frac{ab}{c}$ using ruler and compass.
- 7. Let *ABC* be a right triangle, $\angle C = 90^{\circ}$, and let *CD* be the altitude. Prove that triangles $\triangle ACD$, $\triangle CBD$ are similar. Deduce from this that $CD^2 = AD \cdot DB$.
- 8. Let *M* be a point inside a circle and let AA', BB' be two chords through *M*. Show that then $AM \cdot MA' = BM \cdot MB'$. [Hint: use inscribed angle theorem to show that triangles $\triangle AMB, \triangle B'MA'$ are similar.]
- **9.** Let AA', BB' be altitudes in the acute triangle $\triangle ABC$.
 - (a) Show that points A', B' are on a circle with diameter AB.
 - (b) Show that $\angle AA'B' = \angle ABB'$, $\angle A'B'B = \angle A'AB$
 - (c) Show that triangle $\triangle ABC$ is similar to triangle $\triangle A'B'C$.

