
MATH 8: HANDOUT 15
EUCLIDEAN GEOMETRY 3: TRIANGLE INEQUALITIES. QUADRILATERALS.

8. TRIANGLE INEQUALITIES

In this section, we use previous results about triangles to prove two important inequalities which hold for
any triangle.

We already know that if two sides of a triangle are equal, then the angles opposite to these sides are also
equal (Theorem 9). The next theorem extends this result: in a triangle, if one angle is bigger than another,
the side opposite the bigger angle must be longer than the one opposite the smaller angle.

Theorem 11. In △ABC, if m∠A > m∠C, then we must have BC > AB.

Proof. Assume not. Then either BC = AB or BC < AB.
But if BC = AB, then △ABC is isosceles, so by Theorem 9, m∠A =

m∠C as base angles, which gives a contradiction.
Now assume BC < AB, find the point M on AB so that BM = BC,

and draw the line MC. Then △MBC is isosceles, with apex at B. Hence
m∠BMC = m∠MCB (these two angles are denoted by x in the figure.)
On one hand, m∠C > x (this easily follows from Axiom 3). On the other
hand, since x is an external angle of △AMC, by Problem 6 from Handout
14, we have x > m∠A. These two inequalities imply m∠C > m∠A, which
contradicts what we started with.

Thus, assumptions BC = AB or BC < AB both lead to a contradiction.
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The converse of the previous theorem is also true: opposite a longer side, there must be a larger angle.The
proof is left as an exercise.

Theorem 12. In △ABC, if BC > AB, then we must have m∠A > m∠C.

The following theorem doesn’t quite say that a straight line is the shortest distance between two points,
but it says something along these lines. This result is used throughout much of mathematics, and is referred
to as “the triangle inequality”.

Theorem 13 (The triangle inequality). In △ABC, we have AB +BC > AC.

Proof. Extend the line AB past B to the point D so that BD = BC, and join
the points C and D with a line so as to form the triangle ADC. Observe that
△BCD is isosceles, with apex at B; hence m∠BDC = m∠BCD. It is immediate
that m∠DCB < m∠DCA. Looking at △ADC, it follows that m∠D < m∠C; by
Theorem 11, this implies AD > AC. Our result now follows from AD = AB +BD
(Axiom 2) □
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9. SPECIAL QUADRILATERALS

In general, a figure with four sides (and four enclosed angles) is called a quadrilateral; by convention, their
vertices are labeled in order going around the perimeter (so, for example, in quadrilateral ABCD, vertex A
is opposite vertex C). In case it is unclear, we use ‘opposite’ to refer to pieces of the quadrilateral that are
on opposite sides, so side AB is opposite side CD, vertex A is opposite vertex C, angle ∠A is opposite angle
∠C etc.

Among all quadrilaterals, there are some that have special properties. In this section, we discuss three
such types.

Definition. A quadrilateral is called
• a parallelogram, if both pairs of opposite sides are parallel
• a rhombus, if all four sides have the same length



• a trapezoid, if one pair of opposite sides are parallel (these sides are called bases) and the other pair
is not.

These quadrilaterals have a number of useful properties.

Theorem 14. Let ABCD be a parallelogram. Then

• AB = DC, AD = BC
• m∠A = m∠C, m∠B = m∠D
• The intersection point M of diagonals AC and BD bisects each of them.

Proof. Consider triangles △ABC and △CDA (pay attention to the order
of vertices!). By Axiom 4 (alternate interior angles), angles ∠CAB and
∠ACD are equal (they are marked by 1 in the figure); similarly, angles
∠BCA and ∠DAC are equal (they are marked by 2 in the figure). Thus,
by ASA, △ABC ∼= △CDA. Therefore, AB = DC, AD = BC, and m∠B =
m∠D. Similarly one proves that m∠A = m∠C.

Now let us consider triangles △AMD and △CMB. In these triangles,
angles labeled 2 are congruent (discussed above), and by Axiom 4, angles
marked by 3 are also congruent; finally, AD = BC by previous part. There-
fore, △AMD ∼= △CMB by ASA, so AM = MC, BM = MD. □
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Theorem 15. Let ABCD be a quadrilateral such that opposite sides are equal: AB = DC, AD = BC. Then
ABCD is a parallelogram.

Proof is left to you as a homework exercise.

Theorem 16. Let ABCD be a rhombus. Then it is a parallelogram; in par-
ticular, the intersection point of diagonals is the midpoint for each of them.
Moreover, the diagonals are perpendicular.

Proof. Since the opposite sides of a rhombus are equal, it follows from The-
orem 15 that the rhombus is a parallelogram, and thus the diagonals bisect
each other. Let M be the intersection point of the diagonals; since triangle
△ABC is isosceles, and BM is a median, by Theorem 13 in Assignment
Euclidean Geometry 3, it is also the altitude. □
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HOMEWORK

Note that you may use all results that are presented in the previous sections. This means that you
may use any theorem if you find it a useful logical step in your proof. The only exception is when you are
explicitly asked to prove a given theorem, in which case you must understand how to draw the result of the
theorem from previous theorems and axioms.

1. (Slant lines and perpendiculars) Let P be a point not on line l, and let Q ∈ l be such that PQ ⊥ l.
Prove that then, for any other point R on line l, we have PR > PQ, i.e. the perpendicular is the
shortest distance from a point to a line.

Note: you can not use the Pythagorean theorem for this, as we haven’t yet proved it! Instead, use
Theorem 11.

2. (Angle bisector). Define a distance from a point P to line l as the length of the perpendicular from P
to l (compare with the previous problem).



Let
−→
OM be the angle bisector of ∠AOB, i.e. ∠AOM ∼=

∠MOB.

(a) Let P be any point on
−→
OM , and PQ, PR – perpen-

diculars from P to sides
−→
OA,

−→
OB respectively. Use

ASA axiom to prove that triangles △OPR, △OPQ
are congruent, and deduce from this that distances

from P to
−→
OA,

−→
OB are equal.

(b) Prove that conversely, if P is a point inside angle
∠AOB, and distances from P to the two sides of
the angle are equal, then P must lie on the angle

bisector
−→
OM
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These two statements show that the locus of points equidistant from the two sides of an angle is
the angle bisector

3. Prove that in any triangle, the three angle bisectors intersect at a single point (compare with the
similar fact about perpendicular bisectors – Problem 8 from Handout 14)

4. (Parallelogram) Who doesn’t love parallelograms?
(a) Prove Theorem 15.
(b) Prove that if in a quadrilateral ABCD we have AD = BC, and AD ‖ BC, then ABCD is a

parallelogram.
5. Prove that in a parallelogram, sum of two adjacent angles is equal to 180◦:

m∠A+m∠B = m∠B +m∠C = · · · = 180◦

6. (Rectangle) A quadrilateral is called rectangle if all angles have measure 90◦.
(a) Show that each rectangle is a parallelogram.
(b) Show that opposite sides of a rectangle are congruent.
(c) Prove that the diagonals of a rectangle are congruent.
(d) Prove that conversely, if ABCD is a parallelogram such that AC = BD, then it is a rectangle.

7. (Distance between parallel lines)
Let l,m be two parallel lines. Let P ∈ l, Q ∈ m be two points such that
←→
PQ⊥ l (by Theorem 6, this implies that

←→
PQ⊥ m).

Show that then, for any other segment P ′Q′, with P ′ ∈ l, Q′ ∈ m and
←→
P ′Q′⊥ l, we have PQ = P ′Q′. (This common distance is called the distance
between l, m.) m
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8. The following statements about a parallelogram can be used as its definition, i.e. you can prove any
of them from any other. Can you show how?

We have done some of the proofs already. Establish which other statements need to be proven to
show the equivalence of all of these statements, and try to prove them. For example, Theorem 15
proves (b) ⇒ (a), and Theorem 14 proves (a) ⇒ (b), (a) ⇒ (c), and (a) ⇒ (d); (e) ⇒ (a) is proven
in Problem 4b.
(a) Opposite sides are parallel.
(b) Opposite sides are congruent.
(c) Opposite angles are congruent.
(d) Diagonals bisect each other.
(e) One pair of opposite sides is parallel and congruent.


