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THALES THEOREM

Theorem 33. Let points A', B’ be on the sides of angle ZAOB as
shown in the picture. Then lines AB and A’B’ are parallel if and only

!/
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In this case, we also have % = gg; B B’
We have already seen and proved a special case of this theorem when discussing the midline of a triangle.

The proof of this theorem is unexpectedly hard. In the case when g 2‘, is a rational number, one can use

arguments similar to those we did when talking about midline. The case of irrational numbers is harder yet.
We skip the proof for now; it will be discussed in Math 9.
As an immediate corollary of this theorem, we get the following result.

A
Theorem 34. Let points Aq,..., A, and By,... B, on the sides of an Ay
angle be chosen so that A1As = Ay A3 =--- = A,_1A,, and lines A1 By, Ay
AsBs, ...are parallel. Then ByBs = BoB3=---= B, _1B,.
O B\ B2\ B3

Proof of this theorem is left to you as exercise.

SIMILAR TRIANGLES

Definition. Two triangles AABC, AA’B'C’ are called similar if
LA /A, /B=/B, 0=/
and the corresponding sides are proportional, i.e.
AB AC BC
AB T AC T BC
The common ratio % = ﬁg, = % is sometimes called the similarity coefficient.
There are some similarity tests:

Theorem 35 (AAA similarity test). If the corresponding angles of triangles ANABC, ANA’B’'C’ are equal:
LA=2 /A, /ZB=/B, /0=/C
then the triangles are similar.

Theorem 36 (SSS similarity test). If the corresponding sides of triangles NABC, NA'B'C" are proportional:
AB AC BC

A'B ~ AC' _ BIC

then the triangles are similar.

Theorem 37 (SAS similarity test). If two pairs of corresponding sides of triangles NABC, NA'B'C" are
proportional:

AB AC

A'B AC

and /A= /A’ then the triangles are similar.

Proofs of all of these tests can be obtained from Thales theorem.



HOMEWORK

. Prove Theorem 34 (using Thales Theorem). Hint: let k = 831 ; show that then B;B;11 = kA;A;jy1.

. Using Theorem 34, describe how one can divide a given segment into 5 equal parts using ruler and
compass.

. Given segments of length a, b, ¢, construct a segment of length %b using ruler and compass.

C

. Let ABC be a right triangle, ZC' = 90°, and let CD be the altitude.
Prove that triangles AACD, ACBD are similar. Deduce from this that
CD? = AD - DB.

5. Let M be a point inside a circle and let AA’, BB’ be two chords through B
M. Show that then AM - M A’ = BM - M B’. [Hint: use inscribed angle
theorem to show that triangles AAM B, AB’M A’ are similar. | A

. Let AA’, BB’ be altitudes in the acute triangle AABC.
C

Al

A B
(a) Show that points A’, B’ are on a circle with diameter AB.
(b) Show that LZAA'B' = ZABB', /ZA'B'B=/A"AB
(¢) Show that triangle AABC is similar to triangle AA’B'C.




