MATH 8: EUCLIDEAN GEOMETRY 4

JAN 31, 2021

Circles

Definition. A circle with center O and radius r > 0 is the set of all points P in the plane such that OP = r.

Traditionally, one denotes circles by Greek letters: $\lambda, \omega \dots$ Given a circle λ with center O,

- A radius is any line segment from O to a point A on λ ,
- A chord is any line segment between distinct points A, B on λ ,
- A diameter is a chord that passes through O,

Recall that by Theorem 16, if O is equidistant from points A, B, then O must lie on the perpendicual bisector of AB. We can restate this result as follows.

Theorem 27. If AB is a chord of circle λ , then the center O of this circle lies on the perpendicular bisector of AB.

Relative positions of lines and circles

Theorem 28. Let λ be a circle of radius r with center at O and let l be a line. Let d be the distance from O to l, i.e. the length of the perpendicular OP from O to l. Then:

- If d > r, then λ and l do not intersect.
- If d = r, then λ intersects l at exactly one point P, the base of the perpendicular from O to l. In this case, we say that l is tangent to λ at P.
- If d < r, then λ intersects l at two distinct points.

Proof. First two parts easily follow from Theorem 14: slant line is longer than the perpendicular.

For the last part, it is easy to show that λ can not intersect l at more than 2 points (see homework problem 1). Proving that it does intersect l at two points is very hard and requires deep results about real numbers. This proof will not be given here.

Note that it follows from the definition that a tangent line is perpendicular to the radius OP at point of tangency. Converse is also true.

Theorem 29. Let λ be a circle with center O, and let l be a line through a point A on λ . Then l is tangent to λ if and only if $l \perp OA$

Proof. By definition, if l is the tangent line to λ , then it has only one common point with λ , and this point is the base of the perpendicular from O to l; thus, OA is the perpendicular to l.

Conversely, if $OA \perp l$, it means that the distance from l to O is equal to the radius (both are given by OA), so l is tangent to λ .

Similar results hold for relative position of a pair of circles. We will only give part of the statement.

Theorem 30. Let λ_1, λ_2 be two circles, with centers O_1, O_2 and radiuses r_1, r_2 respectively; assume that $r_1 \geq r_2$. Let $d = O_1O_2$ be the distance between two circles.

- If $d > r_1 + r_2$; then these two circles do not intersect.
- If $d = r_1 + r_2$, then these two circles have a unique common point.
- If $r_1 r_2 < d < r_1 + r_2$, then the two circles intersect at exactly two points.

We skip the proof; we also leave it to you to try and complete the theorem, explaining what happens when $d = r_1 - r_2$, or $d < r_1 - r_2$.

Definition. Two circles are called tangent if they intersect at exactly one point.

Constructions with straightedge and compass

Large part of classical geometry are geometric constructions: can we construct a figure with given properties? Traditionally, such constructions are done using straight-edge and compass: the straight-edge tool constructs lines and the compass tool constructs circles. More precisely, it means that we allow the following basic operations:

- Draw (construct) a line through two given or previously constructed distinct points. (Recall that by axiom 1, such a line is unique).
- Draw (construct) a circle with center at previously constructed point O and with radius equal to distance between two previously constructed points B, C
- Construct the intersections point(s) of two previously constructed lines, circles, or a circle and a line

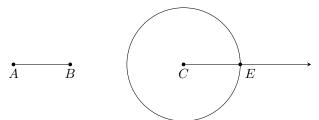
All other constructions (e.g., draw a line parallel to a given one) must be done using these elementary constructions only!!

Constructions of this form have been famous since mathematics in ancient Greece.

Here are some examples of constructions:

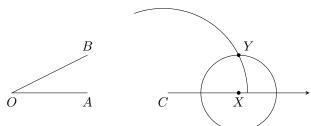
Example 1. Given any line segment \overline{AB} and ray \overrightarrow{CD} , one can construct a point E on \overrightarrow{CD} such that $\overline{CE} \cong \overline{AB}$.

Construction. Construct a circle centered at C with radius AB. Then this circle will intersect \overrightarrow{CD} at the desired point E.



Example 2. Given angle $\angle AOB$ and ray \overrightarrow{CD} , one can construct an angle around \overrightarrow{CD} that is congruent to $\angle AOB$.

Construction. First construct point X on \overrightarrow{CD} such that $CX \cong OA$. Then, construct a circle of radius OB centered at C and a circle of radius AB centered at X. Let Y be the intersection of these circles; then $\triangle XCY \cong \triangle AOB$ by SSS and hence $\triangle XCY \cong \triangle AOB$.



A great tool to learn these constructions is an app *Euclidea*. You can use it in a web browser at http://euclidea.xyz, or install it on your phone or tablet (it is available both for iOS and Android).

Note: Euclidea starts with a slightly more restrictive set of tools. Namely, it only allows drawing circles with a given center and passing through a given point; thus, you can not use another segment as radius.

Homework

- 1. Without using Theorem 28, prove that a circle can not have more than two intersections with a line. [Hint: assume it has three intersection points, and use Theorem 27 to get a contradiction.]
- 2. Prove that given three points A, B, C not on the same line, there is a unique circle passing through these points. This circle is called the circumscribed circle of $\triangle ABC$. Explain how to construct this circle using ruler and compass.
- **3.** Complete levels α , β in Euclidea.