EUCLIDEAN GEOMETRY: SUMMARY OF RESULTS

UPDATED JAN 24, 2021

DEFINITIONS

Undefined objects:

- Points (usually denoted by upper-case letters: A, B,..)
- Lines (usually denoted by lower-case letters: l, m,...)
- Distances: for any two points A, B, there is a non-negative number AB, called distance between A, B. The distance is zero if and only if points coincide.
- Angle measures: for any angle $\angle ABC$, there is a non-negative real number $m \angle ABC$, called the measure of this angle (more on this later).

Defined objects:

- interval, or line segment (notation: \overline{AB}): set of all points on line AB which are between A and B, together with points A and B themselves
- ray (notation: AB): set of all points on the line AB which are on the same side of A as B
- angle (notation: $\angle AOD$): figure consisting of two rays with a common vertex
- parallel lines: two distinct lines l, m are called parallel (notation: $l \parallel m$) if they do not intersect, i.e. have no common points. We also say that every line is parallel to itself.
- triangle (notation: $\triangle ABC$): a figure consisting of 3 distinct points A, B, C, not one the same line, and three segments $\overline{AB}, \overline{BC}, \overline{AC}$ (sides of the triangle).
- isosceles triangle: A triangle $\triangle ABC$ is isosceles if two of its sides have equal length. The two sides of equal length are called legs; the point where the two legs meet is called the apex of the triangle; the other two angles are called the base angles of the triangle; and the third side is called the base.

Definitions related to congruence:

- If two angles $\angle ABC$ and $\angle DEF$ have equal measure, then they are congruent angles, written $\angle ABC \cong \angle DEF$.
- If the distance between points A, B is the same as the distance between points C, D, then the line segments \overline{AB} and \overline{CD} are congruent line segments, written $\overline{AB} \cong \overline{CD}$.
- If two triangles $\triangle ABC$, $\triangle DEF$ have respective sides and angles congruent, then they are congruent triangles, written $\triangle ABC \cong \triangle DEF$. In particular, this means $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, $\overline{CA} \cong \overline{FD}$, $\angle ABC \cong \angle DEF$, $\angle BCA \cong \angle EFD$, and $\angle CAB \cong \angle FDE$.

Midpoints, bisectors, medians, altitudes

- A midpoint M of a segment \overline{AB} is a point on \overline{AB} such that AM = MB.
- A perpendicual bisector of a segment \overline{AB} is the line l which goes through midpoint of \overline{AB} and is perpendicular to \overleftrightarrow{AB} .
- A angle bisector of angle $\angle AOB$ is the ray OM inside this angle such that $\angle AOM \cong \angle MOB$
- A median of a triangle is the line segment connecting a vertex with the midpoint of the opposite side.
- An altitude of the triangle is the line through one of the vertices perpendicular to the opposite side.

AXIOMS

Axiom 1. For any two distinct points A, B, there is a unique line containing these points (this line is usually denoted \overleftrightarrow{AB}).

Axiom 2. If points A, B, C are on the same line, and B is between A and C, then AC = AB + BC

Axiom 3. If point B is inside angle $\angle AOC$, then $m \angle AOC = m \angle AOB + m \angle BOC$. Also, the measure of a straight angle is equal to 180° .

Axiom 4. Let line l intersect lines m, n and angles $\angle 1, \angle 2$ are as shown in the figure below (in this situation, such a pair of angles is called alternate interior angles). Then $m \parallel n$ if and only if $m \angle 1 = m \angle 2$.

Axiom 5 (SAS Congruence). If triangles $\triangle ABC$ and $\triangle DEF$ have two congruent sides and a congruent included angle (meaning the angle between the sides in question), then the triangles are congruent. In particular, if $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, and $\angle ABC \cong \angle DEF$, then $\triangle ABC \cong \triangle DEF$.

Axiom 6 (ASA Congruence). If two triangles have two congruent angles and a corresponding included side, then the triangles are congruent.

Axiom 7 (SSS Congruence). If two triangles have three sides congruent, then the triangles are congruent.

THEOREMS: LINES AND POINTS

Theorem 1. If distinct lines l, m intersect, then they intersect at exactly one point.

Theorem 2. Given a line l and point P not on l, there exists a unique line m through P which is parallel to l.

Theorem 3. If $l \parallel m$ and $m \parallel n$, then $l \parallel n$

Theorem 4. Let A be the intersection point of lines l, m, and let angles 1,3 be as shown in the figure (such a pair of angles are called vertical). Then $m \angle 1 = m \angle 3$.

Theorem 5. Let l, m be intersecting lines such that one of the four angles formed by their intersection is equal to 90°. Then the three other angles are also equal to 90°. (In this case, we say that lines l, m are perpendicular and write $l \perp m$.)

Theorem 6. Let l_1, l_2 be perpendicular to m. Then $l_1 \parallel l_2$. Conversely, if $l_1 \perp m$ and $l_2 \parallel l_1$, then $l_2 \perp m$.

Theorem 7. Given a line l and a point P not on l, there exists a unique line m through P which is perpendicular to l.

THEOREMS: TRIANGLES

Theorem 8. In any triangle $\triangle ABC$, the sum of interior angles is equal to 180° : $m \angle ABC + m \angle BCA + m \angle CAB = 180^\circ$.

Theorem 9 (Base angles of isosceles triangle). If $\triangle ABC$ is isosceles, with base AC, then $m \angle A = m \angle C$. Conversely, if $\triangle ABC$ has $m \angle A = m \angle C$, then it is isosceles, with base AC.

Theorem 11 (Opposite larger angle lies larger side). In $\triangle ABC$, if $m \angle A > m \angle C$, then we must have BC > AB.

Theorem 12 (Opposite larger side is the larger angle). In $\triangle ABC$, if BC > AB, then we must have $m \angle A > m \angle C$.

Theorem 13 (The triangle inequality). In $\triangle ABC$, we have AB + BC > AC.

Theorem 14 (Slant lines and perpendiculars). Let P be a point not on line l, and let $Q \in l$ be such that $PQ \perp l$. Then for any other point R on line l, we have PR > PQ, i.e. the perpendicular is the shortest distance from a point to a line.

Theorem 15 (Exterior angle). Given a triangle $\triangle ABC$, let D be a point on the line AB, so that A is between D and B. (In this situation, angle $\angle DAC$ is called an exterior angle of $\triangle ABC$). Then $m \angle DAC = m \angle B + m \angle C$. In particular this implies that $m \angle DAC > m \angle B$, and similarly for $\angle C$.

Theorem 16 (Perpendicular bisector as locus of equidistant points). Given a line segment \overline{AB} , a point P is equidistant from A, B (i.e. PA = PB) if and only if P lies on the perpendicular bisector to AB.

Theorem 17. In any triangle $\triangle ABC$, the perpendicular bisectors of the three sides intersect at a single point, and this point is equidistant from all three vertices of the triangle.

Theorem 18 (Angle bisector as locus of equidistant points). Define a distance from a point P to line l as the length of the perpendicular from P to l.

Then a point P inside angle $\angle AOB$ is equidistant from the two sides of the angle if and only if it lies on the bisector of that angle.

Theorem 19. In any triangle, the three angle bisectors intersect at a single point, and this point is equidistant from the three sides of the triangle.