MATH 8
NUMBER THEORY 4: CONGRUENCES

REMINDER: EUCLID’S ALGORITHM
Recall that as a corollary of Euclid’s algorithm we have the following result:
Theorem. An integer m can be written in the form
m = ax + by
if and only if m is a multiple of ged(a,b).

For example, if a = 18 and b = 33, then the numbers that can be written in the form 18z + 33y are exactly
the multiples of 3.
To find the values of z,y, one can use Euclid’s algorithm; for small a, b, one can just use guess-and-check.

CONGRUENCES

An important way to deduce properties about numbers, and discover fascinating facts in their own right,
is the concept of what happens to the pieces leftover after division by a specific integer. The first key fact
to notice is that, given some integer m and some remainder r < m, all integers n which have remainder r
upon division by m have something in common - they can all be expressed as r plus a multiple of m.

Notice next the following facts, given an integer m:

o If ny = ¢ym + 71 and ny = gom + 1o, then ny +ne = (1 + g2)m + (r1 + r2);
e Similarly, nyns = (g1gam + q172 + gar1)m + (r172).

This motivates the following definition: we will write
a=b modm

(reads: a is congruent to b modulo m) if a,b have the same reminder upon division by m (or, equivalently,
if @ — b is a multiple of m), and then notice that these congruences can be added and multiplied in the same
way as equalities: if

=d modm

S
\

b=0b" modm
then
a+b=d +b modm
ab=a't modm
Here are some examples:
2=9=23=-5=-12 mod?7
10=100=28=-8=1 mod9

Note: we will occasionally write @ mod m for remainder of a upon division by m.
Since 23 =2 mod 7, we have

233=2=8=1 mod 7
And because 10 =1 mod 9, we have
10*=1"=1 mod9

One important difference is that in general, one can not divide both sides of an equivalence by a number:
for example, 5a = 0 mod m does not necessarily mean that a =0 mod m (see problem 5 below).



PROBLEMS

. Determine whether each of the following congruence statements is true or false.

(a) 5-4=7 mod 11
(b) 4-6=0 mod 8
(¢) 12422=4 mod 5
(d) 4-241=5-2+4+1 mod 4
() 1+2+3=4+5+6 mod 9
(f) 4-8=3-9 mod 5
. Solve each of the following congruence equations by finding an integer value for x that makes the
equation true.
(a) 2z =1 mod 5
) 4 =2 mod 6
) x+5=3 mod 7
d) +5=3z mod 11
)

Use 10 = —1 mod 11 to compute 100 mod 11; 100,000,000 mod 11. Can you derive the
general formula for 10 mod 117
(b) Without doing long division, compute 1375400 mod 11. [Hint: 1375400 = 10°+3-10°+7-10%. . .]

(a) Compute remainders modulo 12 of 5, 52, 53, .... Find the pattern and use it to compute 500
mod 12

(b) Prove that for any a, m, the following sequence of remainders mod m:
a mod m, a®> modm, ......
sooner or later starts repeating periodically (we will find the period later). [Hint: have you heard
of pigeonhole principle?]

(c) Find the last digit of 72021

(a) For of the following equations, find at least one integer solution (if exists; if not, explain why)
5c=1 mod 19
92 =1 mod 24
9z =6 mod 24

(b) Give an example of a, m such that 56 =0 mod m but a Z0 mod m

(a) Show that the equation az =1 mod m has a solution if and only if ged(a,m) = 1. Such an =
is called the inverse of a modulo m. [Hint: Euclid’s algorithm!]
(b) Find the following inverses
inverse of 2 mod 5
inverse of 5 mod 7
inverse of 7 mod 11
Inverse of 11 mod 41

(a) Find gcd(48,39)
(b) Solve 48z + 39y =3
(¢) Find inverse of 39 mod 48.

N

. For a positive number n, let 7(n) (this is Greek letter “tau”) be the number of all divisors of n
(including 1 and n itself).

(

(p*), where p is prime (the answer, of course, depends on p, a)
7(p%q®), where p, ¢ are different primes

(

(

pI'ps? ... ppF), where p; are distinct primes.



