
MATH 8

NUMBER THEORY 4: CONGRUENCES

Reminder: Euclid’s algorithm

Recall that as a corollary of Euclid’s algorithm we have the following result:

Theorem. An integer m can be written in the form

m = ax+ by

if and only if m is a multiple of gcd(a, b).

For example, if a = 18 and b = 33, then the numbers that can be written in the form 18x+33y are exactly
the multiples of 3.

To find the values of x, y, one can use Euclid’s algorithm; for small a, b, one can just use guess-and-check.

Congruences

An important way to deduce properties about numbers, and discover fascinating facts in their own right,
is the concept of what happens to the pieces leftover after division by a specific integer. The first key fact
to notice is that, given some integer m and some remainder r < m, all integers n which have remainder r
upon division by m have something in common - they can all be expressed as r plus a multiple of m.

Notice next the following facts, given an integer m:

• If n1 = q1m+ r1 and n2 = q2m+ r2, then n1 + n2 = (q1 + q2)m+ (r1 + r2);
• Similarly, n1n2 = (q1q2m+ q1r2 + q2r1)m+ (r1r2).

This motivates the following definition: we will write

a ≡ b mod m

(reads: a is congruent to b modulo m) if a, b have the same reminder upon division by m (or, equivalently,
if a− b is a multiple of m), and then notice that these congruences can be added and multiplied in the same
way as equalities: if

a ≡ a′ mod m

b ≡ b′ mod m

then

a+ b ≡ a′ + b′ mod m

ab ≡ a′b′ mod m

Here are some examples:

2 ≡ 9 ≡ 23 ≡ −5 ≡ −12 mod 7

10 ≡ 100 ≡ 28 ≡ −8 ≡ 1 mod 9

Note: we will occasionally write a mod m for remainder of a upon division by m.
Since 23 ≡ 2 mod 7, we have

233 ≡ 23 ≡ 8 ≡ 1 mod 7

And because 10 ≡ 1 mod 9, we have

104 ≡ 14 ≡ 1 mod 9

One important difference is that in general, one can not divide both sides of an equivalence by a number:
for example, 5a ≡ 0 mod m does not necessarily mean that a ≡ 0 mod m (see problem 5 below).



Problems

1. Determine whether each of the following congruence statements is true or false.
(a) 5 · 4 ≡ 7 mod 11
(b) 4 · 6 ≡ 0 mod 8
(c) 12 + 22 ≡ 4 mod 5
(d) 4 · 2 + 1 ≡ 5 · 2 + 1 mod 4
(e) 1 + 2 + 3 ≡ 4 + 5 + 6 mod 9
(f) 4 · 8 ≡ 3 · 9 mod 5

2. Solve each of the following congruence equations by finding an integer value for x that makes the
equation true.
(a) 2x ≡ 1 mod 5
(b) 4x ≡ 2 mod 6
(c) x+ 5 ≡ 3 mod 7
(d) x+ 5 ≡ 3x mod 11

3. (a) Use 10 ≡ −1 mod 11 to compute 100 mod 11; 100, 000, 000 mod 11. Can you derive the
general formula for 10n mod 11?

(b) Without doing long division, compute 1375400 mod 11. [Hint: 1375400 = 106+3·105+7·104 . . . ]

4. (a) Compute remainders modulo 12 of 5, 52, 53, . . . . Find the pattern and use it to compute 51000

mod 12
(b) Prove that for any a, m, the following sequence of remainders mod m:

a mod m, a2 mod m, . . . ...
sooner or later starts repeating periodically (we will find the period later). [Hint: have you heard
of pigeonhole principle?]

(c) Find the last digit of 72021

5. (a) For of the following equations, find at least one integer solution (if exists; if not, explain why)

5x ≡ 1 mod 19

9x ≡ 1 mod 24

9x ≡ 6 mod 24

(b) Give an example of a,m such that 5a ≡ 0 mod m but a 6≡ 0 mod m

6. (a) Show that the equation ax ≡ 1 mod m has a solution if and only if gcd(a,m) = 1. Such an x
is called the inverse of a modulo m. [Hint: Euclid’s algorithm!]

(b) Find the following inverses
inverse of 2 mod 5
inverse of 5 mod 7
inverse of 7 mod 11
Inverse of 11 mod 41

7. (a) Find gcd(48, 39)
(b) Solve 48x+ 39y = 3
(c) Find inverse of 39 mod 48.

8. For a positive number n, let τ(n) (this is Greek letter “tau”) be the number of all divisors of n
(including 1 and n itself).

Compute
τ(10)
τ(77)
τ(pa), where p is prime (the answer, of course, depends on p, a)
τ(paqb), where p, q are different primes
τ(10000)
τ(pa1

1 p
a2
2 . . . pak

k ), where pi are distinct primes.


