
MATH 8: ASSIGNMENT 14: EUCLIDEAN GEOMETRY 2

JANUARY 17, 2021

1. Reminder: Postulates and previously proved results

Axiom 1. For any two distinct points A,B, there is a unique line containing these points (this line is usually

denoted
←→
AB).

Axiom 2. If points A,B,C are on the same line, and B is between A and C, then AC = AB + BC

Axiom 3. If point B is inside angle ∠AOC, then
m∠AOC = m∠AOB +m∠BOC. Also, the measure
of a straight angle is equal to 180◦.
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Axiom 4. Let line l intersect lines m,n and angles
∠1, ∠2 are as shown in the figure below (in this situ-
ation, such a pair of angles is called alternate interior
angles). Then m ‖ n if and only if m∠1 = m∠2.
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In addition, we will assume that given a line l and a point A on it, for any positive real number d, there
are exactly two points on l at distance d from A, on opposite sides of A, and similarly for angels: given a
ray and angle measure, there are exactly two angles with that measure having that ray as one of the sides.

Theorem 1. If distinct lines l,m intersect, then they intersect at exactly one point.

Theorem 2. Given a line l and point P not on l, there exists a unique line m through P which is parallel
to l.

Theorem 3. If l ‖ m and m ‖ n, then l ‖ n

Theorem 4. Let A be the intersection point of lines l,m, and let angles 1, 3 be as shown in the figure below
(such a pair of angles are called vertical). Then m∠1 = m∠3.

Theorem 5. Let l,m be intersecting lines such that one of the four angles formed by their intersection is
equal to 90◦. Then the three other angles are also equal to 90◦. (In this case, we say that lines l,m are
perpendicular and write l ⊥ m.)

Theorem 6. Let l1, l2 be perpendicular to m. Then l1 ‖ l2.
Conversely, if l1 ⊥ m and l2 ‖ l1, then l2 ⊥ m.

Theorem 7. Given a line l and a point P not on l, there exists a unique line m through P which is
perpendicular to l.

Theorem 8. Given any three points A, B, C, which are not on the same line, and line segments AB, BC,
and CA, we have m∠ABC +m∠BCA+m∠CAB = 180◦. (Such a figure of three points and their respective
line segments is called a triangle, written 4ABC. The three respective angles are called the triangle’s interior
angles.)

2. Congruence

• If two angles ∠ABC and ∠DEF have equal measure, then they are congruent angles, written
∠ABC ∼= ∠DEF .

• If the distance between points A, B is the same as the distance between points C, D, then the line
segments AB and CD are congruent line segments, written AB ∼= CD.



• If two triangles 4ABC, 4DEF have respective sides and angles congruent, then they are congruent
triangles, written 4ABC ∼= 4DEF . In particular, this means AB ∼= DE, BC ∼= EF , CA ∼= FD,
∠ABC ∼= ∠DEF , ∠BCA ∼= ∠EFD, and ∠CAB ∼= ∠FDE.

Note that congruence of triangles is sensitive to which vertices on one triangle correspond to which vertices
on the other. Thus, 4ABC ∼= 4DEF =⇒ AB ∼= DE, and it can happen that 4ABC ∼= 4DEF but
¬(4ABC ∼= 4EFD).

3. Congruence of Triangles

Triangles consist of six pieces (three line segments and three angles), but some notion of constancy of
shape in triangles is important in our geometry. We describe below some rules that allow us to, in essence,
uniquely determine the shape of a triangle by looking at a specific subset of its pieces.

Axiom 5 (SAS Congruence). If triangles 4ABC and 4DEF have two congruent sides and a congruent
included angle (meaning the angle between the sides in question), then the triangles are congruent. In
particular, if AB ∼= DE, BC ∼= EF , and ∠ABC ∼= ∠DEF , then 4ABC ∼= 4DEF .

Other congruence rules about triangles follow from the above: the ASA and SSS rules. However, their
proofs are less interesting than other problems about triangles, so we can take them as axioms and continue.

Axiom 6 (ASA Congruence). If two triangles have two congruent angles and a corresponding included side,
then the triangles are congruent.

Axiom 7 (SSS Congruence). If two triangles have three sides congruent, then the triangles are congruent.

4. Isosceles triangles

A triangle is isosceles if two of its sides have equal length. The two sides of equal length are called legs;
the point where the two legs meet is called the apex of the triangle; the other two angles are called the base
angles of the triangle; and the third side is called the base.

While an isosceles triangle is defined to be one with two sides of equal length, the next theorem tells us
that is equivalent to having two angles of equal measure.

Theorem 9 (Base angles equal). If 4ABC is isosceles, with base AC, then m∠A = m∠C.
Conversely, if 4ABC has m∠A = m∠C, then it is isosceles, with base AC.

A proof is given to you as homework.
In any triangle, there are three special lines from each vertex. In 4ABC, the altitude from A is perpen-

dicular to BC (it exists and is unique by Theorem 7); the median from A bisects BC (that is, it crosses BC
at a point D which is the midpoint of BC); and the angle bisector bisects ∠A (that is, if E is the point where
the angle bisector meets BC, then m∠BAE = m∠EAC).

For general triangle, all three lines are different. However, it turns out that in an isosceles triangle, they
coincide.

Theorem 10. If B is the apex of the isosceles triangle ABC, and BM is
the median, then BM is also the altitude, and is also the angle bisector,
from B.

Proof. Consider triangles 4ABM and 4CBM . Then AB = CB (by
definition of isosceles triangle), AM = CM (by definition of midpoint),
and side BM is the same in both triangles. Thus, by SAS axiom,
4ABM ∼= 4CBM . Therefore, m∠ABM = m∠CBM , so BM is the
angle bisector.
Also, m∠AMB = m∠CMB. On the other hand, m∠AMB +m∠CMB =
m∠AMC = 180

◦
. Thus, m∠AMB = m∠CMB = 180

◦
/2 = 90

◦
. �
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5. Triangle inequalities

In this section, we use previous results about triangles to prove two important inequalities which hold for
any triangle.

We already know that if two sides of a triangle are equal, then the angles opposite to these sides are also
equal (Theorem 9). The next theorem extends this result: in a triangle, if one angle is bigger than another,
the side opposite the bigger angle must be longer than the one opposite the smaller angle.

Theorem 11. In 4ABC, if m∠A > m∠C, then we must have BC > AB.

Proof. Assume not. Then either BC = AB or BC < AB.
But if BC = AB, then 4ABC is isosceles, so by Theorem 9, m∠A =

m∠C as base angles, which gives a contradiction.
Now assume BC < AB, find the point M on AB so that BM = BC,

and draw the line MC. Then 4MBC is isosceles, with apex at B. Hence
m∠BMC = m∠MCB (these two angles are denoted by x in the figure.) On
one hand, m∠C > x (this easily follows from Axiom 3). On the other hand,
since x is an external angle of 4AMC, by Problem 1 we have x > m∠A.
These two inequalities imply m∠C > m∠A, which contradicts what we
started with.

Thus, assumptions BC = AB or BC < AB both lead to a contradiction.
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The converse of the previous theorem is also true: opposite a longer side, there must be a larger angle.The
proof is left as an exercise.

Theorem 12. In 4ABC, if BC > AB, then we must have m∠A > m∠C.

The following theorem doesn’t quite say that a straight line is the shortest distance between two points,
but it says something along these lines. This result is used throughout much of mathematics, and is referred
to as “the triangle inequality”.

Theorem 13 (The triangle inequality). In 4ABC, we have AB + BC > AC.

Proof. Extend the line AB past B to the point D so that BD = BC, and join
the points C and D with a line so as to form the triangle ADC. Observe that
4BCD is isosceles, with apex at B; hence m∠BDC = m∠BCD. It is immediate
that m∠DCB < m∠DCA. Looking at 4ADC, it follows that m∠D < m∠C; by
Theorem 11, this implies AD > AC. Our result now follows from AD = AB +BD
(Axiom 2) �
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6. Homework

Note that you may use all results that are presented in the previous sections. This means that
you may use Theorem 3, for example, if you find it a useful logical step in your proof. The only exception
is when you are explicitly asked to prove a given theorem, in which case you must understand how to draw
the result of the theorem from previous theorems and axioms.

1. (This problem is from last week) A triangle in which two sides are congruent is called isosceles. Such
triangles have many special properties.

(a) Let 4ABC be an isosceles triangle, with AB ∼= BC. Sup-
pose D is a point on AC such that AD ∼= DC (such point is
called midpoint of the segment). Prove that then, 4BD ∼=
4CBD and deduce from this that ∠DBA ∼= ∠DBC, and
∠A ∼= ∠C. What can we say about ∠ADB?

(b) Conversely, show that if 4ABC is such that ∠A ∼= ∠C,
then 4ABC is isosceles, with AB ∼= BC. A C
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2. Given a triangle 4ABC, let D be a point on the line AB, so that A is between D and B. In this
situation, angle ∠DAC is called an external angle of 4ABC. Prove that m∠DAC = m∠B + m∠C
(in particular this implies that m∠DAC > m∠B, and similarly for ∠C).

A B

C

D

3. (Perpendicular bisector) Let AB be a line segment. The perpendicular bisector L of AB is the line
that passes through the midpoint M of AB and is perpendicular to AB.
(a) Prove that for any point P on L, triangles 4APM and 4BPM are congruent. Deduce from

this that AP = BP .
(b) Conversely, let P be a point on the plane such that AP = BP . Prove that then P must be on

L.
Taken together, these two statements say that a point P is equidistant from A,B if and only if it

lies on the perpendicular bisector L of segment AB. Another way to say it is that the locus of all the
points equidistant from A,B is the perpendicular bisector of AB.

4. Show that for any triangle 4ABC, the perpendicular bisectors of the three sides intersect at a single
point, and this point is equidistant from all three vertices of the triangle. [Hint: consider the point
where two of the bisectors intersect. Prove that this point is equidistant from all three vertices.]

Note: the intersection point can be outside the triangle.
5. (Slant lines and perpendiculars) Let P be a point not on line l, and let Q ∈ l be such that PQ ⊥ l.

Prove that then, for any other point R on line l, we have PR > PQ, i.e. the perpendicular is the
shortest distance from a point to a line.

Note: you can not use the Pythagorean theorem for this, as we haven’t yet proved it!
Instead, use Theorem 11.

6. (Angle bisector). Define a distance from a point P to line l as the length of the perpendicular from
P to l (compare with the previous problem).



Let
−→
OM be the angle bisector of ∠AOB, i.e. ∠AOM ∼=

∠MOB.

(a) Let P be any point on
−→
OM , and PQ, PR – perpen-

diculars from P to sides
−→
OA,

−→
OB respectively. Use

ASA axiom to prove that triangles 4OPR, 4OPQ
are congruent, and deduce from this that distances

from P to
−→
OA,

−→
OB are equal.

(b) Prove that conversely, if P is a point inside angle
∠AOB, and distances from P to the two sides of
the angle are equal, then P must lie on the angle

bisector
−→
OM
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These two statements show that the locus of points equidistant from the two sides of an angle is
the angle bisector

7. Prove that in any triangle, the three angle bisectors intersect at a single point (compare with problem
4)


