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JANUARY 10, 2021

Euclidean geometry tries to describe geometric properties of various figures in the plane. Figures are
understood as sets of points; we will use capital letters for points and write P ∈ m for “point P lies in
figure m”, or “figure m contains point P”. The notion of “point” can not be defined: it is so basic that it is
impossible to explain it in terms of simpler notions. In addition, there are some other basic notions (lines,
distances, angles) that can not be defined. Instead, we can state some basic properties of these objects;
these basic properties are usually called “postulates” or “axioms of Euclidean geometry”. All results in
Euclidean geometry should be proved by deducing them from the axioms; justifications “it is
obvious”, “it is well-known”, or “it is clear from the figure” are not acceptable.

We allow use of all logical rules. We will also use all the usual properties of real numbers, equations,
inequalities, etc.

For your enjoyment, take a look at the book which gave rise to Euclidean geometry and much more,
Euclid’s Elements, dated about 300 BC, and used as the standard textbook for the next 2000 years. Nowadays
it is avaialable online at http://math.clarku.edu/~djoyce/java/elements/toc.html

1. Basic objects

These objects are the basis of all our constructions: all objects we will be discussing will be defined in
terms of these objects. No definition is given for these basic objects.

• Points
• Lines
• Distances: for any two points A,B, there is a non-negative number AB, called distance between A,B.
• Angle measures: for any angle ∠ABC, there is a real number m∠ABC, called the measure of this

angle (more on this later).

We will assume that every line has infinitely many points on it. Also, we will assume that any nontrivial
angle has positive measure.
We will also frequently use words “between” when describing relative position of points on a line (as in: A
is between B and C) and “inside” (as in: point C is inside angle ∠AOB). We do not give full list of axioms
for these notions; it is possible, but rather boring.

Having these basic notions, we can now define more objects. Namely, we can give definitions of

• interval, or line segment (notation: AB): set of all points on line AB which are between A and B,
together with points A and B themselves

• ray (notation:
−→
AB): set of all points on the line AB which are on the same side of A as B

• angle (notation: ∠AOD): figure consisting of two rays with a common vertex
• parallel lines: two distinct lines l,m are called parallel (notation: l ‖ m) if they do not intersect, i.e.

have no common points. We also say that every line is parallel to itself.



2. First postulates

Axiom 1. For any two distinct points A,B, there is a unique line containing these points (this line is usually

denoted
←→
AB).

Axiom 2. If points A,B,C are on the same line, and B is between A and C, then AC = AB + BC

Axiom 3. If point B is inside angle ∠AOC, then
m∠AOC = m∠AOB +m∠BOC. Also, the measure
of a straight angle is equal to 180◦.

O
A

C

B

Axiom 4. Let line l intersect lines m,n and angles
∠1, ∠2 are as shown in the figure below (in this situ-
ation, such a pair of angles is called alternate interior
angles). Then m ‖ n if and only if m∠1 = m∠2.
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3. First theorems

Theorem 1. If lines l,m intersect, than they intersect at exactly one point.

Proof. Assume that they intersect at more than one point. Let P,Q be two of the points where they intersect.
Then both l,m go through P,Q. This contradicts Axiom 1. Thus, our assumption (that l,m intersect at
more then one point) must be false. �

Theorem 2. If l ‖ m and m ‖ n, then l ‖ n

Theorem 3. Let A be the intersection point of lines l,m, and let angles 1, 3 be as shown in the figure below
(such a pair of angles are called vertical). Then m∠1 = m∠3.
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Proof. Let angle 2 be as shown in the figure to the
left. Then, by Axiom 3, m∠1 + m∠2 = 180◦, so
m∠1 = 180◦ −m∠2. Similarly, m∠3 = 180◦ −m∠2.
Thus, m∠1 = m∠3. �

Theorem 4. Let l,m be intersecting lines such that one of the four angles formed by their intersection is
equal to 90◦. Then the three other angles are also equal to 90◦. (In this case, we say that lines l,m are
perpendicular and write l ⊥ m.)

Theorem 5. Let l1, l2 be perpendicular to m. Then l1 ‖ l2.
Conversely, if l1 ⊥ m and l2 ‖ l1, then l2 ⊥ m.

Theorem 6. Given a line l and point P not on l, there exists a unique line m through P which is parallel
to l.

Theorem 7. Given a line l and a point P not on l, there exists a unique line m through P which is
perpendicular to l.



4. Triangles

Theorem 8. Given any three points A, B, C, which are not on the same line, and line segments AB, BC,
and CA, we have m∠ABC +m∠BCA+m∠CAB = 180◦. (Such a figure of three points and their respective
line segments is called a triangle, written 4ABC. The three respective angles are called the triangle’s interior
angles.)

5. Congruence

It will be helpful, in general, to have a way of comparing geometric objects to tell whether they are the
same. We will build up such a notion and call it congruence of objects. To begin, we define congruence
of angles and congruence of line segments (note that an angle cannot be congruent to a line segment; the
objects have to be the same type).

• If two angles ∠ABC and ∠DEF have equal measure, then they are congruent angles, written
∠ABC ∼= ∠DEF .

• If the distance between points A, B is the same as the distance between points C, D, then the line
segments AB and CD are congruent line segments, written AB ∼= CD.

• If two triangles 4ABC, 4DEF have respective sides and angles congruent, then they are congruent
triangles, written 4ABC ∼= 4DEF . In particular, this means AB ∼= DE, BC ∼= EF , CA ∼= FD,
∠ABC ∼= ∠DEF , ∠BCA ∼= ∠EFD, and ∠CAB ∼= ∠FDE.

Note that congruence of triangles is sensitive to which vertices on one triangle correspond to which vertices
on the other. Thus, 4ABC ∼= 4DEF =⇒ AB ∼= DE, and it can happen that 4ABC ∼= 4DEF but
¬(4ABC ∼= 4EFD).

6. Congruence of Triangles

Triangles consist of six pieces (three line segments and three angles), but some notion of constancy of
shape in triangles is important in our geometry. We describe below some rules that allow us to, in essence,
uniquely determine the shape of a triangle by looking at a specific subset of its pieces.

Axiom 5 (SAS Congruence). If triangles 4ABC and 4DEF have two congruent sides and a congruent
included angle (meaning the angle between the sides in question), then the triangles are congruent. In
particular, if AB ∼= DE, BC ∼= EF , and ∠ABC ∼= ∠DEF , then 4ABC ∼= 4DEF .

Other congruence rules about triangles follow from the above: the ASA and SSS rules. However, their
proofs are less interesting than other problems about triangles, so we can take them as axioms and continue.

Axiom 6 (ASA Congruence). If two triangles have two congruent angles and a corresponding included side,
then the triangles are congruent.

Axiom 7 (SSS Congruence). If two triangles have three sides congruent, then the triangles are congruent.



7. Isosceles triangles

A triangle is isosceles if two of its sides have equal length. The two sides of equal length are called legs;
the point where the two legs meet is called the apex of the triangle; the other two angles are called the base
angles of the triangle; and the third side is called the base.

While an isosceles triangle is defined to be one with two sides of equal length, the next theorem tells us
that is equivalent to having two angles of equal measure.

Theorem 9 (Base angles equal). If 4ABC is isosceles, with base AC, then m∠A = m∠C.
Conversely, if 4ABC has m∠A = m∠C, then it is isosceles, with base AC.

Proof. Assume that 4ABC is isoceles, with apex B. Then by SAS, we have 4ABC ∼= 4CBA. Therefore,
m∠A = m∠C.

The proof of the converse statement is left to you as a homework exercise. �



8. Homework

Note that you may use all results that are presented in the previous sections. This means that
you may use Theorem 3, for example, if you find it a useful logical step in your proof. The only exception
is when you are explicitly asked to prove a given theorem, in which case you must understand how to draw
the result of the theorem from previous theorems and axioms.

1. (Parallel and Perpendicular Lines) Part of the spirit of Euclidean geometry is that parallelism and
perpendicularity are special concepts; Theorem 6, for example, is generally considered part of the
heart of Euclidean geometry. For this problem, prove the following theorems presented in the First
Theorems section, using only the information from the Basic Objects and First Postulates sections.
Axiom 4 will be of key importance.
(a) Prove Theorem 2. [Hint: assume that l and n are not parallel; then they must intersect at some

point P .]
(b) Prove Theorem 4.
(c) Prove Theorem 5.
(d) Prove Theorem 6. (You may assume that at least one such parallel line exists, you must prove

that there can’t be more than one.)
(e) Prove Theorem 7. (You may assume that at least one such perpendicular line exists, you must

prove that there can’t be more than one.)
2. (Isosceles Triangles) Isosceles triangles have particularly useful symmetry properties; the fact that

congruent sides comes hand in hand with congruent angles is essential to understanding isosceles
triangles. For this problem, you are given isosceles triangle 4ABC, with base AC. The first part of
the problem will ask you to look inside the triangle, and the second part will create some structures
outside the triangle; figures are given below to help you, if you want them.
(a) Suppose D is a point on AC such that AD ∼= DC. Prove that ∠DBA ∼= ∠DBC. What can we

say about ∠ADB?
(b) Extend AB to point X, and then extend XC to point Y . Prove that ∠XAC ∼= ∠CAY if and

only if BC ‖ AY .

A C

B

D

A C

B

X

Y



3. (Triangle Congruence) Recall that when we refer to triangles, in particular triangle congruence, it is
significant the order in which we label the vertices. In general (architecture, drawing, origami etc.),
one thinks of triangles as meaningful in their own right without vertex ordering, but in geometry,
points themselves are quite significant, so we do need to point them out. For this problem, you are
given triangle 4ABC.
(a) Explain why 4BCA and 4BAC are also triangles.
(b) Prove that, if 4ABC ∼= 4CBA, then 4ABC is isosceles.
(c) Prove the converse of Theorem 9, i.e. if 4ABC has ∠A ∼= ∠C, then 4ABC is isosceles.
(d) If 4ABC ∼= 4BCA, what can we say about the side lengths of this triangle?
(e) Suppose D is a point on side AB. Is it possible for 4ABC and 4ADC to be congruent? What

if I let you pick the order of the vertices?
4. (Stop!) Although a partial figure is provided, this problem may be an interesting exercise in imagi-

nation. Have fun!
(a) Suppose A, B, C, D are points such that AB ∼= BC ∼= CD ∼= DA and ∠DAB ∼= ∠ABC ∼=
∠BCD ∼= ∠CDA. Prove that each of the four angles is a right angle. What is this figure called?

(b) Suppose X, Y are on AB (with X closer to A and Y closer to B, as shown in the figure below),
and E is on AD and F on BC. Prove that m∠EXY > 90◦.

(c) Suppose m∠EXY = 135◦. Prove that 4EAX is isosceles.
(d) Suppose now that m∠EXY = 135◦, 4EAX ∼= 4FBY , and EX ∼= XY . Suppose also that two

triangles are constructed around vertices C and D as well, essentially forming two more corner
triangles, each congruent to 4EAX. Now cut all four of these triangles out from ABCD. What
are you left with?
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5. (Elephants and Hamsters) Work on any two problems from the Elephants and Hamsters homework
sheet that we have not solved in class.


