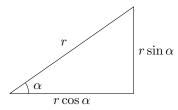
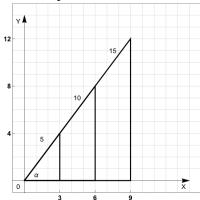

MATH 7: HANDOUT 21 TRIGONOMETRY 1: MAIN DEFINITIONS

BASIC TRIGONOMETRY

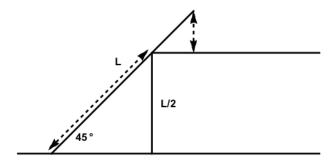

For any angle α , we define two numbers, $\sin \alpha$ (sine) and $\cos \alpha$ (cosine) as the lengths of the legs in the right triangle with hypotenuse 1 and angle α :


In general, for a right-angle triangle with angle α , we can find $\sin \alpha$ and $\cos \alpha$ by following formulas:

$$\sin \alpha = rac{ ext{opposite side}}{ ext{hypotenuse}}$$
 $\cos \alpha = rac{ ext{adjacent side}}{ ext{hypotenuse}}$

Interestingly, the definitions on \sin and \cos do not really depend on size of the triangle, but only the angle itself. Since any two right triangles with the same angles are similar, it shows that if we have a right triangle with angle α and hypotenuse r, then the sides will be $r \sin \alpha$ and $r \cos \alpha$:

For example:



$$\sin\alpha = \frac{\text{opposite side}}{\text{hypotenuse}} = \frac{4}{5} = \frac{8}{10} = \frac{12}{15}$$
$$\cos\alpha = \frac{\text{adjacent side}}{\text{hypotenuse}} = \frac{3}{5} = \frac{6}{10} = \frac{9}{15}$$

There are some special angles, for which sin and cos can be computed explicitly:

•			-		-	•
Trigonometric Functions						
Function	Notation	Definition	0°	30°	45°	60°
sine	$\sin(\alpha)$	opposite side hypotenuse	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cosine	$\cos(\alpha)$	adjacent side hypotenuse	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$

- **1.** Which one is greater?
 - (a) $0 \text{ or } \sin 0$
 - (b) $1 \text{ or } \sin 30$
 - (c) $\sin 45 \text{ or } \cos 45$
 - (d) $\cos 60 \text{ or } \sin 30$
- **2.** A tree casts a 60 m long shadow when the angle of elevation of the sun is 30°. How tall is the tree? [Angle of elevation is the angle that line from tip of shadow on ground to top of tree makes with the horizontal.]
- 3. A ladder of length L is resting on a ledge whose height is half of the ladder's length. The ladder makes a 45° angle with the ground.
 - (a) How long is the portion of the ladder between the ground and the point of contact of ledge and ladder? [indicated by a long dashed arrow]
 - (b) At what height is the top of ladder above the ledge? [indicated by short dashed arrow]

- **4.** A cruise ship travels north for 3 miles and then north-west for another 3 miles. How far will it end up from its original position? [North-end is the direction that bisects the angle between north and east.]
- 5. A ship travels for 3 miles north, then turns and goes for 2 miles northeast, then for another 5 miles northnortheast. Where will it be at the end? how far east and north of the original position? [Northeast means that its direction bisects the angle between north and east directions, thus forming an angle of 45° with due north. North-northeast means that this direction bisects the angle between north and north-east, thus forming 22.5° angle with due north.]
- **6.** Consider a regular pentagon inscribed in a circle of radius 1. What is the side length of such a pentagon? [Hint: drop a perpendicular from the center to one of the sides and complete it to form a right triangle.]
- 7. Consider a parallelogram ABCD with AB=1, AD=3, $\angle A=40^{\circ}$. Find the lengths of diagonals in this parallelogram.
- **8.** Prove that the area of a triangle $\triangle ABC$ can be computed using the formula $A = \frac{1}{2}AB \cdot AC \cdot \sin \angle A$. [Hint: what is the altitude from vertex B?]
- **9.** What is the area of a regular pentagon inscribed in a circle of radius 10? [Make sure to use a trigonometric function.]