MATH 7: HANDOUT 9 BINOMIAL PROBABILITIES

BINOMIAL PROBABILITIES

Binomial coefficients are also useful in calculating probabilities.

Let us first introduce the terminology:

Trial: one instance of an experiment. For example, if we are doing a sequence of coin tosses, each coin toss is a *trial*. If we are shooting ducks, each shot is a *trial*.

n: Number of trials is denoted by n.

Success: a trial that ends up in a desired outcome. If we are looking for Heads, *success* is an outcome of getting a Head. If we are looking at duck shooting, *success* is a hit.

k: Number of successes we need.

p: Probability of success in one trial (1/2 for heads/tails)

Failure: a trial that does not end up in a success (missing a duck, getting a Tail while looking for Heads) q: Probability of failure, q = 1 - p.

Imagine that we want to calculate the probability of getting k successes in n trials, and we know p. Then:

$$P(k \text{ successes in } n \text{ trials }) = \binom{n}{k} p^k q^{n-k}, \text{ where }$$

- p probability of success in one try;
- q = 1 p probability of failure in one try;
- *n* number of trials;
- *k* number of successes;
- n-k number of failures.

Example: You roll a 6-sided die 6 times. What is the probability of getting a 6 exactly once?

Solution: Here we have: n = 6, k = 1, p = 1/6, q = 5/6. Then

$$P = {6 \choose 1} \cdot \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^5 = 6 \cdot \frac{5^5}{6^5} = \frac{5^5}{6^6}.$$

Example: A hunter is shooting ducks. Probability of hitting a duck with one shot is p = 1/3. What is the probability that out of 7 shots, she will hit exactly three times?

Solution: Here we have: n = 7, k = 3, p = 1/3, q = 2/3. Then

$$P = {7 \choose 3} \cdot \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^{7-3} = {7 \choose 3} \cdot \frac{2^4}{3^7}.$$

1

HOMEWORK

In the problems below, you can give your answer as a binomial coefficient without calculating it. If you want to calculate it, use Pascal triangle: $\binom{n}{k}$ is the k-th element in the n-th row of the Pascal triangle, counting from 0.

- **1.** A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of
 - (a) more than 2 hits?
 - (b) at least 3 misses?
- **2.** In each of 4 races, the Democrats have a 60% chance of winning. Assuming that the races are independent of each other, what is the probability that:
 - (a) The Democrats will win 0 races, 1 race, 2 races, 3 races, or all 4 races?
 - (b) The Democrats will win at least 1 race.
 - (c) The Democrats will win a majority of the races.
- **3.** The ratio of boys to girls at birth in Singapore is quite high at 1.09 : 1. What proportion of Singapore families with exactly 6 children will have at least 3 boys?
- **4.** [Same as Problem 4 in Handout 8] A hunter is shooting ducks. Probability of hitting a duck with one shot is p = 1/3.
 - (a) The hunter makes 5 shots. What is the probability that she misses all five?
 - (b) What is the probability that out of 5 shots, she will hit a duck at least once? Will this probability double if she makes 10 shots? (You can use the calculator for computing the answers)
 - (c) What is the probability that out of 5 shots, she will hit exactly once? Will this probability double is she makes 10 shots?
 - (d) What is the probability that out of 5 shots, she will hit a duck exactly three times? Will this probability double if she makes 10 shots? (You can use the calculator for computing the answers)
 - (e) What is the probability that she hits a duck half times or more if she fires 5 times (that is, 3, 4, or 5 hits)? What about if she fires 10 times (that is 5, 6, 7, 8, 9, or 10 hits)?
 - (f) What is the most likely number of hits out of 5 shots? And out of 10 shots?
- 5. [Same as Problem 5 in Handout 8] At a fair, they offer you to play the following game: you are tossing small balls in a large crate full of empty bottles; if at least one of the balls lands inside a bottle, you win a stuffed toy (worth about \$5). Unfortunately, it is really impossible to aim, so the game is just a matter of luck (or probability theory): every ball you toss has a 20% probability of landing inside the bottle.
 - (a) If you are given three balls, what is the probability that all three will be hits? That all three will be misses? That at least one will be a hit?
 - (b) Same questions for five balls.
 - (c) What about seven balls?
 - (d) How much should the organizers charge for 3 balls to break even? What about for 5 balls?