MATH 7: HANDOUT 3 ALGEBRAIC EXPRESSIONS AND IDENTITIES

MAIN ALGEBRAIC IDENTITIES

Here is a list of the main algebraic identities we discussed:

1.
$$(ab)^n = a^n b^n$$

4.
$$(a-b)^2 = a^2 - 2ab + b^2$$

5. $a^2 - b^2 = (a-b)(a+b)$

2.
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

5.
$$a^2 - b^2 = (a - b)(a + b)$$

2.
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

3. $(a+b)^2 = a^2 + 2ab + b^2$

Replacing in the last equality a by \sqrt{a} , b by \sqrt{b} , we get

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = a - b$$

which is very helpful in simplifying expressions with roots, for example:

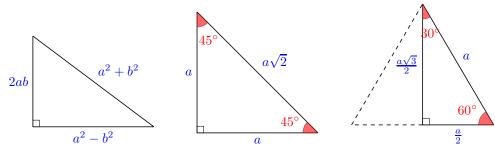
$$\frac{1}{\sqrt{2}+1} = \frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1$$

We also discussed solving simple equations: linear equation (i.e., equation of the form ax + b = 0, with a, bsome numbers, and x the unknown) and equation where the left hand side is factored as product of linear factors, such as (x-2)(x+3) = 0.

PYTHAGORAS' THEOREM

In a right triangle with legs a and b, and hypotenuse c, the square of the hypotenuse is the sum of squares of each leg. $c^2 = a^2 + b^2$. The converse is also true, if the three sides of a triangle satisfy $a^2 + b^2 = c^2$, then the triangle is a right triangle. Some Pythagorean triples are: (3,4,5), (5,12,13), (7,24,25), (8.15,17), (9,40,41), (11,60,61), (20,21,29).

To generate such Pythagorean triples, choose two positive integers a and b. Then plug the values into the sides as shown on the first picture:



Try to figure out why the sides of this triangle satisfy the Pythagoras' Theorem!

45-45-90 Triangle: If one of the anglesin a right triangle is 45° , the other angle is also 45° , and two of its legs are equal. If the length of a leg is a, the hypothenuse is $a\sqrt{2}$.

30-60-90 Triangle: If one of the angles in a right triangle is 30°, the other angle is 60°. Such triangle is a half of the equilateral triangle. That means that if the hypothenuse is equal to a, its smaller leg is equal to the half of the hypothenuse, i.e. $\frac{a}{2}$. Then we can find the other leg from the Pythagoras' Theorem, and it will be equal to $\frac{a\sqrt{3}}{2}$.

1

1. Simplify

(a)
$$\frac{42^2}{6^2} =$$

(b) $\frac{6^3 \times 6^4}{2^3 \times 3^4} =$

(c)
$$(2^{-3} \times 2^7)^2 =$$

(c)
$$(2^{-3} \times 2^7)^2 =$$

(d) $\frac{3^2 \times 6^{-3}}{10^{-3} \times 5^2} =$

2. Simplify

(a)
$$\frac{a}{2} + \frac{b}{4} =$$

(b) $\frac{1}{a} + \frac{1}{b} =$

(c)
$$\frac{3}{x} + \frac{5}{xy} + \frac{5}{3a} =$$

3. Using algebraic identities calculate

(a)
$$299^2 + 598 + 1 =$$

(b)
$$199^2 =$$

(c)
$$51^2 - 102 + 1 =$$

4. Expand

(a)
$$(4a-b)^2 =$$

(b)
$$(a+9)(a-9) =$$

(c)
$$(3a-2b)^2 =$$

5. Factor

(a)
$$ab + ac =$$

(b)
$$3a(a+1) + 2(a+1) =$$

(c)
$$36a^2 - 49 =$$

6. Write each of the following expressions in the form $a + b\sqrt{3}$, with rational a, b:

(a)
$$(1+\sqrt{3})^2$$

(b)
$$(1+\sqrt{3})^3$$

(a)
$$(1+\sqrt{3})^3$$

(b) $(1+\sqrt{3})^3$
(c) $\frac{1}{1-2\sqrt{3}}$

(d)
$$\frac{1+\sqrt{3}}{1-\sqrt{3}}$$

(e)
$$\frac{1+2\sqrt{3}}{\sqrt{3}}$$

- 7. In a trapezoid ABCD with bases AD and BC, $\angle A = 90^{\circ}$, and $\angle D = 45^{\circ}$. It is also known that AB = 10cm, and AD = 3BC. Find the area of the trapezoid.
- 8. In a right triangle ABC, BC is the hypotenuse. Draw AD perpendicular to BC, where D is on BC. The length of BC=13, and AB=5. What is the length of AD?

9. Factor

(a)
$$ab + ac =$$

(b)
$$3a(a+1) + 2(a+1) =$$

(c)
$$36a^2 - 49 =$$

10. What is the area of a regular hexagon whose side is 5cm?