MATH 6 ASSIGNMENT 5: TRUTH TABLES AND LOGIC LAWS

OCTOBER 25, 2020

TRUTH TABLES

Logical variables: take value True (T) or False (F). **Basic logic operations:**

NOT (NOT A): true if A is false, and false if A is true.

A	NOT A
\overline{T}	\overline{F}
F	T

AND (A AND B): true if both A, B are true, and false otherwise

OR $(A \cap B)$ inclusive or: true if at least one of A, B is true, and false otherwise.

XOR $(A \times B)$ exclusive or: true if different, false if the same.

IF (as in "if A, then B; written $A \implies B$): if A is false, automatically true; if A is true, it is true only when B is true

Logic operations can be combined, e.g. $(A \cap B) \cap C$.

Truth tables: *

A	$\mid B \mid$	$A \operatorname{xor} B$
T	T	F
T	F	T
F	T	T
F	F	F

A	B	A and B
T	T	T
T	F	F
F	T	F
F	F	F

A	B	$A \mathrm{or} B$
T	T	T
T	F	T
\overline{F}	T	T
F	F	F

	\overline{A}	B	$A \rightarrow B$
[\overline{T}	$\mid T \mid$	T
	T	F	F
Γ.	F	T	T
Γ-	\overline{F}	F	T

Truth tables are useful in solving the problems about knights and knaves. Here is a typical problem: on the island of knights and knaves you meet two inhabitants, Zed and Alice. Zed tells you, 'I am a knight or Alice is a knave.' Alice tells you, 'Of Zed and I, exactly one is a knight.' We could solve it by making the following table:

Zed	Alice	Z is a knight or A is a knave	Of Z and A, exactly one is a knight
knight	knight	T	F
knight	knave	T	T
knave	knight	F	T
knave	knave	Т	F

LOGIC LAWS

We can combine logic operations, creating more complicated expressions such as $A \ \mathrm{AND}(B \ \mathrm{OR} \ C)$. As in arithmetic, these operations satisfy some laws: for example $A \ \mathrm{OR} \ B$ is the same as $B \ \mathrm{OR} \ A$. Here are two other laws:

NOT
$$(A \text{ AND } B)$$
 is the same as $(\text{NOT } A) \text{ OR}(\text{NOT } B)$
 $A \implies B$ is the same as $(\text{NOT } B) \implies (\text{NOT } A)$

Truth tables provide the easiest way to prove complicated logical rules: if we want to prove that two formulas are equivalent (i.e., always give the same answer), make a truth table for each of them, and if the tables coincide, they are equivalent.

1. On the island next to he island of knights and knaves there are 3 kinds of people:

knights, who always tell the truth

knaves, who always lie

normal people, who sometimes lie and sometimes tell the truth

On that island, you meet 3 people, A, B, and C, one of whom is a knight, one a knave, and one normal (but not necessarily in that order). They make the following statements:

A: I am normal

B: That is true

C: I am not normal

What are A, B, and C?

- **2.** Check whether $A \implies B$ and $B \implies A$ are equivalent, by writing the truth table for each of them.
- **3.** Check that $A \implies B$ is equivalent to (NOT A) OR B (thus, "if you do not clean up your room, you will be punished" and "clean up your room, or you will be punished" are the same).
- **4.** A teacher tell the student "If you do not take the final exam, you get an F". Does it mean that
 - (a) If the student does take the final exam, he will not get an F
 - (b) If the student does not get an F, it means he must have taken the final exam.
- **5.** Write the truth table for each of the following formulas. Are they equivalent (i.e., do they always give the same value)?
 - (a) $(A \circ R B) \text{ AND}(A \circ R C)$
 - (b) A OR(B AND C).
- **6.** Define a new logical operation, XOR (exclusive or) as follows: $A \times B$ is true if exactly one of A, B is true, and false otherwise.
 - (a) Write the truth table for $A \times B$.
 - (b) Can you express XOR using only AND, OR, and NOT (that is, write a formula equivalent to A XOR B using only AND, OR, and NOT)? Hint: create truth table with columns: A, B, \bar{A} , \bar{B} , $A\bar{B}$, $\bar{A}B$, and think which logical operations can give you XOR output.
- 7. (a) Write truth tables for formulas A AND(B OR C) and (A AND B) OR C (hint: there will be 8 rows in the table). Are these formulas equivalent (i.e., do they always give the same answer)?
 - (b) The waiter in a restaurant tells you: "our fixed price dinner includes soup and appetizer or salad." Denoting

A =vour dinner will include soup

B =your dinner will include appetizer

C =your dinner will include salad

what would be the correct way to write his statement using letters A, B, C and logical operations AND, OR?

8. You probably know Lewis Carroll as the author of *Alice in Wonderland* and other books. What you might not know is that he was also a mathematician very much interested in logic, and had invented a number of logic puzzles. Here is one of them:

You are given 3 statements.

- (a) All babies are illogical.
- (b) Nobody is despised who can manage a crocodile.
- (c) Illogical persons are despised.

Can you guess what would be the natural conclusion from these 3 statements?