MATH 5: CLASSWORK 16, February 21, 2021

AD-Median

AE- Altitude

AF- Angle Bisector

Triangle properties:

1. Sum of interior angles of a triangle is 180°.

($\forall \Delta$ ABC, \angle ABC + \angle BCA+ \angle BAC = 180°) New symbol \forall - for any out there.

2. In any triangle the sum of 2 sides is always grater then the third.

 $(\forall \Delta ABC, AB+BC > AC)$

- 3. In any triangle,
 - the largest interior angle is opposite the largest side.
 - the smallest interior angle is opposite the smallest side
 - the middle-sized interior angle is **opposite** the middle-sized side

Given: AC > BC

Prove: $\angle ABC > \angle BAC$

Construct point X so that |BC| = |XC|.

 $\angle 1 = \angle 2 = \angle 3 + \angle A$ (Exterior angle theorem)

Because

 $\angle 3 + \angle A + \angle AXB = 180 = \angle 2 + \angle AXB$

 $\angle B = \angle 1 + \angle 3 = \angle A + \angle 3 + \angle 3$

MATH5: HOMEWORK 16,

February 21, 2021

1. The triangles with such measurements do not exist. Describe what is wrong with them:

- 2. Using a ruler with no marks and a compass construct
 - a. perpendicular line to a given line through a point on this line

b. perpendicular line through a point outside of a line

3. Find area of the below figures:

- 4. Replace stars by digits in the number 21*53* to make it divisible by 45 [hint: remember divisibility rule by 9?].
- 5. On a separate piece of paper prepare the problem on operations with powers. Your problem will be offered to another student to be solved. Example:

$$\frac{6^6}{2^2 \cdot 3^3} = 2^7 \cdot 3^7$$