Lesson 8 HW

Write expressions to solve the word problems and evaluate them where possible: 1 A snail crawls 2 cm every minute. How far will cm it crawl in 7 min? 2 7 min A snail crawls *v* cm every minute. How far will it crawl in 12 min? A snail crawls *v* cm every minute. How far will it crawl in *t* min? A snail crawls 3 cm every minute. How long will it take for it to crawl 21 cm? A snail crawls 3 cm every minute. How long will it take for it to crawl *d* cm? A snail crawls *v* cm every minute. How long will it take for it to crawl *d* cm? 2 Analyze the operations and undo them to solve the equation: $\mathbf{x} \times \mathbf{5} \div \mathbf{3} \div \mathbf{2} = \mathbf{5}$ X |x| =x =

17

5

x	123	625		419		236	76
у	99		167	192	374		287
x + y		702	298		429	509	

x	234	625		419		236	276
у	99		167	192	374		109
x-y		223	298		429	83	

X	56	36	63		72	42	35
у	8		7	4			7
$x \div y$		4		7	9	6	

x	7		9	4			6
у		5		8	3	6	
$x \times y$	56	25	63		27	18	42

Use rectangle diagrams to solve the following equations for *x*:

 $w \times x = 24$ $g \div x = m$ $32 = x \times 8$ $x \div y = z$
 $a \times 3 - a \times 2 \square a \times 2$ $x = _$ $x = _$ $x = _$
 $a \times 3 - a \times 2 \square a \times 2$ $w - (5 + 10) \square w - 5 - 10$ $q \div 10 \square q \div 20$
 $m \times 5 + m \times 2 \square m \times 7$ $b - (3 + 8) \square b - 3 + 8$ $a \times 1 \square a \times 0$

19

		20					
7 In your notebook mark the order of operations and write the programs to calculate the expressions below:							
<i>a</i>). <i>q</i> − 12 × <i>z</i> + 6	b). q – 12	\times (z + 6)	<i>c</i>). $(q - 12) \times (z + 6)$				
8 In your notebook use rectangle diagrams to solve the following equations. Copy your answers here.							
<i>y</i> × 8 = 64	$\mathbf{z} \div 9 = 4$	$7 \times x = 56$	54 : w = 6				
<i>y</i> =	z =	<i>x</i> =	w =				
9 Set M = {a	$, \square$ }, set K = {m, 4}, so	et D = {a, m, □, ★	}				
Draw a Venn Dia	gram for these sets.						
Use you diagram to complete the TRUE statements using symbols \subset and $\not\subset$:							
M D	K D						
10 Fill in one of the symbols \in , \notin , \subset , \notin according to the drawing.							
P QR	$P \dots [QR] \qquad P \dots$	[QR)					
[RT] PR	$Q \dots [TR)$ $[RQ]$] RT P	Q R T				
[QR) QR	$[RQ) \dots PT \qquad [QR]$) [RQ)					
11 Check ✓ the TRUE statements; cross mark × the FALSE statements.							
$\Box x \in A \cap B$	\Box $\mathbf{r} \notin \mathbf{A} \cap \mathbf{B}$	\Box z \in z	$A \cap B$ $\begin{pmatrix} r & t \\ w & x \end{pmatrix} = B$				
$\Box \{r, t\} = A \cap$	$B \square A \cap B \subset A$	\Box $A \cap$	$B \subset B$				

16 Cat Island, where the brothers are stuck, has 6 towns: A, B, C, D, E, and F.

Every town is connected to two closest towns by roads. Say, town **A** is connected to towns **B** and **F**.

Also there are roads directly connecting towns A and D, and towns B and F.

Plot these roads on the graph **1***.*

Orange cats use bus #1 that begins and ends at the town **A** and skips only towns **E** and **F**.

Plot the route of the bus #1 on the graph 2.

Purple cats use bus #2 that begins and ends at the town **C** and skips only town **A**.

Plot the route of the bus #2 on the graph **3**.

• A

• **B**

1

F

Complete the graphs below:

