Lesson № 22

1 Solve the word problems:

A. A robot spent 3 hours to make 6 sets of chess pieces. How long will it take the robot to make 17 such sets?

B. It takes a raft 6 hours to drift every 18 km downstream. How long will it take the raft to drift 24 km?

C. There were 18 apples and 24 oranges in a bad. Katie took $\frac{1}{3}$ of those apples and $\frac{1}{4}$ of the oranges. How many fruit did she take?

2 Solve equations:

General fraction $\frac{m}{n}$.

Calculate:

$$1 m + 1 m =$$

$$\frac{1}{7} + \frac{1}{7} = \frac{1}{n} + \frac{1}{n} =$$

$$\frac{1}{n} + \frac{1}{n} =$$

$$1 \text{ cm} \times 3 =$$

$$1 \text{ m} \times 3 =$$

$$\frac{1}{7} \times 3 =$$

$$\frac{1}{n} \times 3 =$$

A fraction $\frac{1}{n}$ represents a unit broken into n equal parts.

A fraction $\frac{m}{n}$ represents **m** fractions $\frac{1}{n}$ added together:

$$\frac{m}{n} = m \times \frac{1}{n}$$

Calculate:

$$3 \text{ cm} + 5 \text{ cm} =$$

$$2 dm + 6 dm =$$

$$\frac{2}{9} + \frac{5}{9} = \frac{2}{n} + \frac{5}{n} =$$

$$\frac{2}{n} + \frac{5}{n} =$$

$$3 \text{ cm} \times 5 =$$

$$2 \text{ m} \times 7 =$$

$$\frac{1}{11} \times 4 =$$

$$\frac{1}{n} \times 9 =$$

Label the following fractions on the number line: $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{12}$, $\frac{5}{12}$,

$$\frac{3}{4}$$
 , $1\frac{1}{2}$, $1\frac{3}{12}$, $\frac{2}{3}$

Compare the yellow (Y) and the gray (G) areas on the drawing: 6

The yellow and the gray rectangles have the same area but different shape.

These shapes illustrate two ways of making a fraction

$$\frac{m}{n} = \frac{1}{n} \times m = m : n$$

Fill in the blanks:

$$\frac{1}{5} \times 3 = \frac{1}{5} = 3:5$$

$$\square \times 4 = \frac{4}{7} = \square : \square$$

$$\frac{1}{5} \times 3 = \frac{1}{5} = 3:5$$
 $\square \times 4 = \frac{4}{7} = \square : \square$ $\frac{1}{9} \times \square = \frac{1}{9} = 7:\square$

$$\square \times 5 = \frac{1}{6} = 5 : \square$$

$$\frac{1}{8} \times 3 = \square : \square$$

$$\square \times 5 = \frac{1}{6} = 5 : \square$$
 $\frac{1}{8} \times 3 = \frac{\square}{\square} = \square : \square$ $\frac{1}{\square} \times \square = \frac{1}{5} = 3 : \square$

$$\frac{1}{7} \times \square = \frac{4}{7} = \square : \square$$

$$\frac{\square}{5} \times 2 = \frac{2}{5} = 2 : \square$$

$$\frac{1}{7} \times \square = \frac{4}{7} = \square : \square$$
 $\frac{\square}{5} \times 2 = \frac{2}{5} = 2 : \square$ $\frac{1}{8} \times 5 = \frac{\square}{\square} = 5 : \square$

Addition and subtraction in ancient Egyptian symbols is similar to what they are in our numerical system.

Sometimes you have to regroup.

For example:

Number	Symbol	Description
1		Vertical stroke
10	Λ	Heel bone
100	9	Scroll
1000	9	Lotus flower
10,000	6	Pointing finger
100,000	Ŷ	Fish
1,000,000	ન્દિ	Kneeling person

The answer is 11 hundreds, 3 tens, and 12 units.

Instead of 12 units we want to have 2 units and 1 ten.

Also, instead of 11 hundreds we want to have 1 thousand and 2 hundreds.

So the answer is really: 900000 ||.

Calculate in Egyptian:

 $_{2.}$

3.

5.

 $_{6.}$

How many different ways did you find?

A. Three players have to play a group chess tournament. Each player must have a game with another one. How many games will be played?

B. Four players have to play a group chess tournament. Each player must have a game with another one. How many games will be played?

C. Five players have to play a group chess tournament. Each player must have a game with another one. How many games will be played?

10 The following bus services connecting towns A, B, C, D, and E are available in both directions:

1. A – B : \$5

2. D - C : \$7

3. B - E : \$4

4. B – D: \$5

5. D - E : \$4

6.C - E:6

What is the cheapest way from A to C?

 \boldsymbol{B}

 \boldsymbol{D}

 \boldsymbol{E}