## WARM UP

1 Calculate using property of addition: try to make it easier to calculate!

7 + 16 + 3 =\_\_\_\_\_\_

7 + 6 + 7=

50 + 29 +21 = \_\_\_\_\_

**2** Write down the numbers using digits:

two hundred ninety six \_\_\_\_\_

eighty six \_\_\_\_\_

three hundred two

forty six \_\_\_\_\_

six hundred twenty seven \_\_\_\_\_

five hundred forty eight \_\_\_\_\_

one hundred eighty\_\_\_\_\_

nine hundred sixty \_\_\_\_\_

one nundred eighty\_\_\_\_

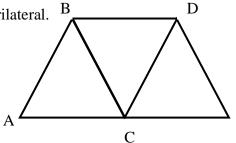
3

- a) Lisa's bag fits into Ann's bag. Ann's bag fits into Clara's bag. Whose bag is the biggest?
- b) Ben's tea is colder than Paul's tea but warmer than Christina's tea. Whose tea is the coldest?

# Homework Review

1. Insert operation signs +, - to get correct equalities:

2. The perimeter of the square is 32cm. Imagine the rectangle with a length equal to the square's side, and the width is 3cm shorter. Find the perimeter of the rectangle.

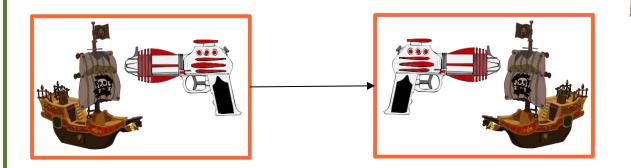

### Lesson 11

## **Operations. Inverse operations.**

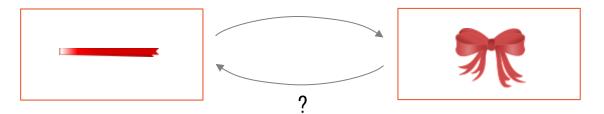
3. The quadrilateral is consisting of three equilateral triangles.

The side of the triangle is 6cm. Find the perimeter of the quadrilateral. B

P = \_\_\_\_\_




E


# **New Material I**

In mathematics, **inverse operations** are operations that 'undo' each other. Most operations we use have an inverse. Addition and subtraction are inverse operations — they "undo" each other.

a) Look at the pictures below and describe what Jack did with the toys? Can this operation be reversed?



b) Name the operations performed on the picture below. Can this operation be reversed?



5

To prepare a soup, a chef has cut some vegetables. Can these operations be reversed?



6

Write the inverse operations for each action:

| To put on a shirt        |  |
|--------------------------|--|
| To break a toy car       |  |
| To climb up a tree       |  |
| To pour water into a cup |  |
| To turn on a TV set      |  |

7

Mind reading game.

- 1. Think of any number from 1 to 50.
- 2. Add 25 to it.\_\_\_\_\_
- 3. Subtract 20 from a product.\_\_\_\_\_
- 4. Subtract 6 from a product\_\_\_\_\_
- 5. Add 50 to a product\_\_\_\_\_
- 6. Subtract 14 from a product\_\_\_\_\_\_.

What did you end up with?

Tell me the result and I'll tell you the number you thought of.

# **REVIEW**

# How do we work with parentheses?

The part between two parentheses is treated like a SINGLE number.

Removing parentheses.

$$a + (b + c) = a + b + c$$

$$a + (b - c) = a + b - c$$

$$a - (b - c) = a - b + c$$

8

Number the order of operations in the expressions.

$$m + (n - k)$$

$$m + (n - k - t) + k$$

$$(m+n)-k$$

$$m+n-(k-t+k)$$

9

Compare using <, > or =:

$$(27+16)-43$$
 \_\_\_\_  $(60+15)-74$ 

$$51 - (13 + 19) \underline{\hspace{1cm}} 12 + (85 - 79)$$

10

Open parentheses and calculate:

$$100 - (50 - 38) - (25 + 13) =$$

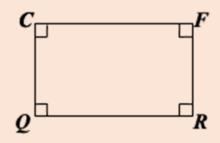
$$(49+11-16)-(92-76)=$$

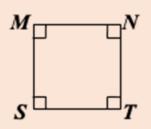
$$(54-39)+(47-28)-(16+9)=$$

11

Calculate:

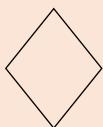
$$77cm - 29 cm + 1dm 9cm =$$
\_\_\_\_\_


$$10m - 4m 7dm - 50dm =$$
\_\_\_\_\_


# **New Material II**

# **Special quadrilaterals:**

**Rectangle**: a quadrilateral in which all four angles are right angles.


**Square**: a quadrilateral in which all 4 angles are right angles, and all 4 sides are of equal length.





**Parallelogram:** A quadrilateral with 2 pairs of parallel sides. **Rhombus:** A parallelogram with 4 sides of equal length.





Lesson 11

**Operations. Inverse operations.** 

12

Answer the questions and explain your answers:

- a) Can square be a rectangle?
- b) Can square be a parallelogram?
- c) Can square be a rhombus?

13

Using a ruler, make a sketch of a parallelogram ABCD, with a side AB = 5cm and side BC = 10cm. Find other two sides and a perimeter of the parallelogram.

 $CD = \underline{\hspace{1cm}} cm$ 

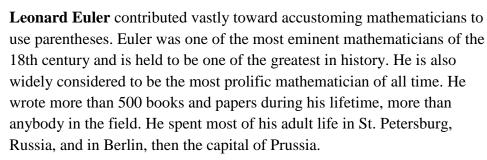
 $DA = \underline{\hspace{1cm}} cm$ 

P = \_\_\_\_\_

14

Look at each figure. Place an X in the box if it appears to describe the figure pictured.

| 4 vertices                       |  |  |
|----------------------------------|--|--|
| Four sides                       |  |  |
| Opposite sides parallel          |  |  |
| Perpendicular sides              |  |  |
| Opposite sides have equal length |  |  |
| All sides have equal length      |  |  |


# Did you know ...

#### **Origins of Parentheses**

The symbols themselves first showed up in the late 14th century, with scribes using *virgulae convexae* (also called *half-moons*) for a variety of purposes.

By the end of the 16th century, the parentheses (from the Latin "insert beside") had begun to

assume their modern role. Early occurrence of parentheses in math are found in the manuscript edition of R. Bombelli's Algebra (about 1550).





Leonhard Euler (1707-1783)