MATH 10 ASSIGNMENT 23: SUBGROUPS

APR 25, 2021

Definition. Let G be a group. A subgroup of G is a subset $H \subset G$ which is itself a group, with the same operation as in G. In other words, H must be

- **1.** closed under multiplication: if $H_1, h_2 \in H$, then $h_1h_2 \in H$
- **2.** contain the group unit e
- **3.** for any element $h \in H$, we have $h^{-1} \in H$.

Examples are given in problem 1 below.

Homework

- 1. Are these subgroups?
 - (a) $G = \mathbb{Z}$ (with operation of addition), $H = 5\mathbb{Z}$ =multiples of 5.
 - (b) $G = \mathbb{Z}$ (with operation of addition), $H = \{n = 5k + 1\}$.
- **2.** Let G be a group, and let $a \in G$. Consider the set of all powers of a:

$$H = \{a^n \mid n \in \mathbb{Z}\} \subset G$$

(note that n can be negative).

- (a) Show that H is a subgroup (this is called the subgroup generated by a). Subgroups of this form are also called *cyclic* subgroups.
- (b) Describe explicitly the cyclic subgroup in \mathbb{Z}_{10} generated by 2; by 3; by 6.
- **3.** Let $H \subset G$ be a subgroup. For any element $g \in G$, define the subset

$$[g] = gH = \{gh, h \in H\}$$

- Subsets of this form are called *cosets*. Note that two different elements can define the same coset.
- (a) List all cosets in the case when $G = \mathbb{Z}, H = 5\mathbb{Z}$.
- (b) Show that two elements x, x' are in the same coset gH iff x' = xh for some $h \in H$.
- (c) Show that two cosets g_1H , g_2H either coincide (if $g_1 = g_2h$ for some $h \in H$) or do not intersect at all.