Measuring Earthquakes

<u>Two measurements</u> that describe the "power" or "strength" of an earthquake are:

- Intensity a measure of the degree of earthquake shaking at a given locale based on the amount of damage.
- Magnitude estimates the amount of energy released at the source of the earthquake:
 - Logarithmic scale (not linear!)
 - Magnitude <u>2 or lower</u> earthquakes <u>cannot be felt</u> by humans.
 - Magnitude <u>7 and over</u> potentially cause <u>serious</u> <u>damage over larger areas</u>, depending on their depth.
 - The largest earthquakes in historic times have been of magnitude slightly over 9, although there is no limit to the possible magnitude.

Modified Mercalli Scale vs. Richter Scale

Intensity category	Effects	Magnitude scale
I. Instrumental	Not felt	1-2
II. Just perceptible	Felt by only a few people, especially on upper floors of tall buildings	3
III. Slight	Felt by people lying down, seated on a hard surface, or in the upper stories of tall buildings	3.5
IV. Perceptible	le Felt indoors by many, by few outside; dishes and windows rattle	
V. Rather strong	strong Generally felt by everyone; sleeping people may be awakened	
VI. Strong	Trees sway, chandeliers swing, bells ring, some damage from falling objects	
VII. Very strong	General alarm; walls and plaster crack	5.5
VIII. Destructive	Felt in moving vehicles; chimneys collapse; poorly constructed buildings seriously damaged	6
IX. Ruinous	Some houses collapse; pipes break	6.5
X. Disastrous	strous Obvious ground cracks; railroad tracks bent; some landslides on steep hillsides	
XI. Very disastrous	I. Very disastrous all services interrupted (electrical, water, sewage, railroad); severe landslides	
XII. Catastrophic		

Earthquake Magnitude and Energy Equivalence

	Earthquake Magnitude	Energy Released [*] (Millions of Ergs)	Approximate Energy Equivalence
bare	0	630,000 20,000,000	1 pound of explosives
	ely 2	630,000,000	Energy of lightning bolt
fe		20,000,000,000 630,000,000,000	1000 pounds of explosives
	5 6	20,000,000,000,000 630,000,000,000,000	1946 Bikini atomic bomb test
	7	20,000,000,000,000,000	1994 Northridge Earthquake 1989 Loma Prieta Earthquake
	8	630,000,000,000,000,000	1906 San Francisco Earthquake
	9	20,000,000,000,000,000,000	1980 Eruption of Mount St. Helens 1964 Alaskan Earthquake 1960 Chilean Earthquake
	10	630,000,000,000,000,000,000	Annual U.S. energy consumption

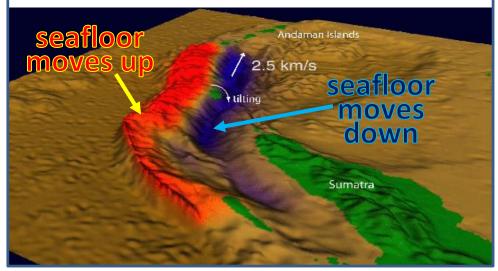
One unit of magnitude increase corresponds to ~10-fold increase in wave amplitude and ~30-fold energy increase.

Greatest Earthquakes Ever Recorded

1. (M 9.5) <u>22 May 1960 –</u> <u>Great Chilean Earthquake,</u> <u>Valdivia, Chile</u>:

most powerful earthquake ever recorded; lasted ~10 min; triggered tsunami which reached Hawaii and Japan; 3000-5000 dead.

2. (M 9.2) <u>27 March 1964 –</u> Great Alaskan Earthquake (aka Good Friday earthquake), Prince William Sound, AK:


lasted ~4.5 min; tsunami, soil liquefaction; 128 dead.

Greatest Earthquakes

3. (M 9.1-9.3) <u>26 December</u> <u>2004 – Indian Ocean Earthquake</u> (aka Sumatra-Andaman earthquake), off the west coast of Sumatra:

shaking lasted ~8 min; surface wave oscillations exceeded 1 cm everywhere on Earth; the longest ever fault rupture of 1600 km triggered tsunami waves (up to 30 m high reaching as far as 2 km inland in Indonesia); killed 230,000 people in 14 countries.

Ever Recorded

4. (M 9.0) <u>11 March 2011</u> <u>– Great East Japan</u> <u>Earthquake (aka Tohoku</u> <u>earthquake), off the west</u> <u>coast of Japan</u>:

lasted ~6 min; tsunami waves (up to 40 m high, travelled as far as 10 km inland); the disaster caused partial meltdown at Fukushima Daiichi Nuclear Power Plant; 15,800 dead.

Earthquake Hazards: Shaking

<u>Amount of structural damage</u> due to earthquake vibrations strongly depends on <u>intensity and duration of the vibrations</u>. Buildings respond differently to shaking based on construction styles and materials (wood - more flexible, holds up well; earthen materials - very vulnerable to shaking).

- High frequency body waves shake low buildings more.
- Low frequency surface waves shake high buildings more.
- Intensity of shaking also depends on type of subsurface material.
- Unconsolidated materials (sand, mud) amplify shaking more than rocks do.
- Fine-grained, sensitive materials can lose strength and collapse when shaken.

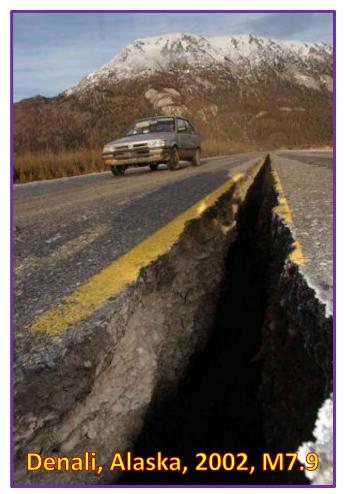
Earthquake Hazards: Soil

Liquefaction of the ground:

- Unconsolidated materials (such as sand and silt) saturated with water turn into a mobile fluid.
- Damage to foundation as well as sinking and tilting of structures can occur.

Landslides:

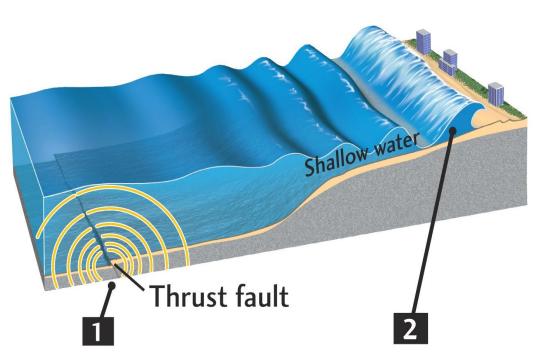
 Earthquakes can produce slope instability leading to landslides.


Earthquake Hazards: Shift

Ground displacement/rupture:

- Ground surface may shift and <u>split</u> <u>apart</u>, especially if the focus of the earthquake is shallow.
- Vertical displacements of surface produce <u>fault scarps</u>.

Thrust fault scarp: Chi Chi earthquake, Taiwan, 1999, M7.6


Fires: As a result of ground displacement, fires can occur from shifting of subsurface utilities (electric and gas lines).

Earthquake Hazards: Water Bodies Seiches:

 The <u>rhythmic back-and-forth sloshing of water</u> in lakes, reservoirs, and enclosed basins. Such waves <u>can weaken</u> reservoir walls and cause destruction.

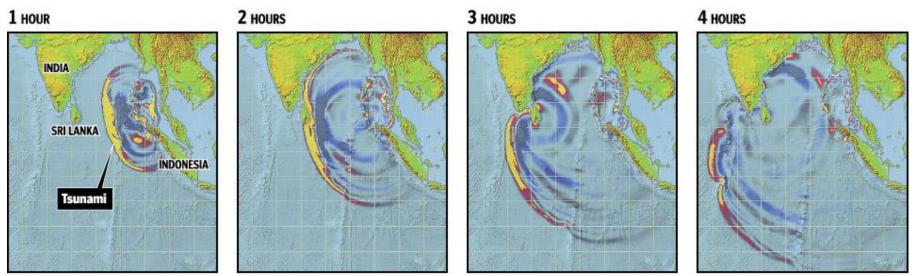
Tsunami: Japanese for "harbor wave" – harmless until it enters the harbor...

- 1. Destructive <u>Seismic sea</u> <u>Waves</u> that result from vertical displacement of the ocean floor or a large undersea landslide triggered by an earthquake.
- In shallow coastal waters can occasionally exceed 30 meters (100 feet).

Hazards and Risks of Tsunami

Tsunamis are most devastating near the earthquake. They are larger and strike the region soon after the earthquake.

- <u>Tsunamis also travel</u> <u>across entire oceans</u> and cause damage and death thousands of miles from the earthquake.
- <u>Tsunamis travel very</u> <u>quickly relative to normal</u> <u>ocean waves</u>, especially in open water, where <u>velocities increase with</u> water depth and can reach 1,000 km/hr (normal ocean wave: ~90 km/hr)



 The most tsunami prone areas are those associated with volcanoes and earthquakes, mainly <u>subduction zones</u>. Large subduction zones produce the most tsunamis: <u>Pacific ~80%</u>, Atlantic ~10%, elsewhere ~10%.

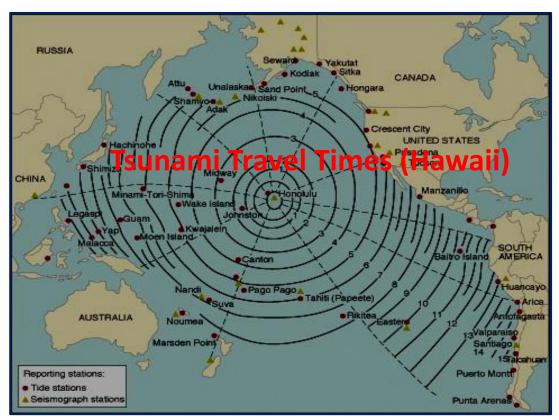
Tsunami: 2004 Indian Ocean Earthquake

This giant 9.1 magnitude earthquake ruptured the greatest fault length of any recorded earthquake, spanning a distance of 990 miles (1600 km), or *longer than the state of California*.

 Such a giant push of water generated a <u>series</u> of <u>ocean-wide</u> <u>tsunami waves</u>, the first of which <u>hit Indonesia</u> 25 minutes after the start of the quake.

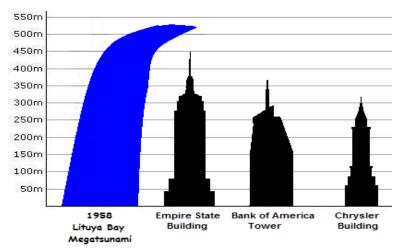
 The waves had grown to 100 feet (30 m) high in some places; more tsunami waves struck Thailand two hours later, and other countries across the Indian Ocean were hit a few hours later. BANDA ACEH, INDONESIA: June 23, 2004 A satellite image of the waterfront area of Aceh province's capital city <u>before the tsunami</u>.

BANDA ACEH, INDONESIA: December 28, 2004 An image taken <u>after the tsunami</u> shows destroyed housing and the shoreline nearly wiped out.


And after the water is gone...

Tsunami Warning

Regions with a <u>high tsunami risk</u> typically use <u>tsunami</u> <u>warning systems</u> to warn the population before the wave reaches land:


- The Pacific Tsunami Warning System is based in Honolulu, Hawaii. It monitors Pacific Ocean seismic activity.
- As soon as an earthquake of <u>magnitude >6.5</u> is located <u>in the sea</u>, the alarm starts.
- Using computer simulations based on real-time data from bottom pressure sensors, attached to buoys, scientists forecast the time of tsunami arrival in different locations.

Megatsunami is an informal term to describe a tsunami that has initial wave heights much larger than normal tsunamis.

- <u>Origin</u>: a large scale landslide, collision, or volcanic eruption event as opposed to raising or lowering of the sea floor due to tectonic activity.
- <u>Prehistoric</u>: asteroid impacts; Mt. Etna volcanic landslide; East Molokai Volcano collapse; etc.
- <u>Modern</u>: 1792, Mount Unzen, Japan (100m); 1963, Vajont Dam, Italy (250m); 1980, Mount St. Helens-Spirit Lake, WA (260m).
- <u>1958, Lituya Bay Megatsunami</u>: a huge landslide (~40 million cubic meters of rock and ice) triggered by an 8.3 magnitude earthquake in Alaska created waves with a <u>run-up</u> <u>up to ~525m high</u> on the Lituya Bay, largest known in modern times.

Future concerns: potential massive landslide on a volcanic ocean island (ex. Cape Verde, Canary Islands, Hawaii)