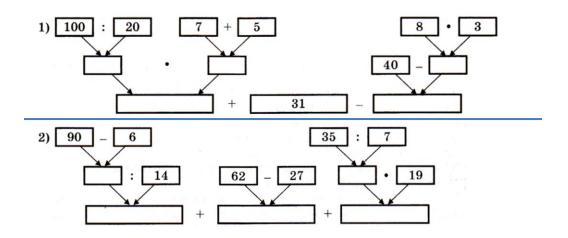
Algebra and Geometry 1. Homework 5.

1. Evaluate:

a.
$$(-3)^4$$

b. -3^4
c. 3^4 ;
d. $(-5)^3$;
e. -5^3 ;
f. 5^3 ;
g. $(3 \cdot 5)^2$;
h. $3 \cdot 5^2$;
i. $\frac{1}{4^2}$;
j. $\left(\frac{1}{4}\right)^2$;
k. 3^{-3} ;
l. $(-3)^{-3}$;
m. $(-5 \cdot 2)^3$


Remember, that a^n : $a^m = a^{n-m} = a^{n+(-m)} = a^n \cdot \frac{1}{a^m} = a^n \cdot a^{-m}$

2. Evaluate:

a.
$$8 + 7^2$$
; $(8 + 7)^2$; $8^2 + 7^2$;
b. $(11 - 6)^3$; $11 - 6^3$; $11^3 - 6^3$;
c. $5 \cdot 2^4$; $(5 \cdot 2)^4$; $5^4 \cdot 2^4$;
d. $(12:2)^3$; $12:2^3$; $12^3:2^3$

3. Using the diagram below write the numerical expression and after that evaluate it. Solution for #1 (you need to do #2):

$$100: 20 \cdot (7+5) + 31 - (40-8\cdot 3) = 5 \cdot 12 + 31 - 16 = 75$$

- 4. It is known that a + 1 is divisible by 3. Prove that 4 + 7a is divisible by 3 as well.
- 5. Sum of two natural numberы is 45. First number will give the remainder 4 upon division by 12, second number will give the remainder 5 upon division by 12. What are these numbers?
- 6. Which of the following expression is divisible by 9 (check the divisibility by 9 rule)?
 - 1) $151 \cdot 45 + 151 \cdot 36$
 - 2) $154 \cdot 121 + 815 \cdot 121$
 - 3) $872 \cdot 45 872 \cdot 25$
 - 4) $574 \cdot 85 574 \cdot 65$
- 7. 4 angles are formed at the intersection of 2 lines. One of them is 35°. What is the measure of 3 others?
- 8. 3 lines intersect at 1 point and form 6 angles. One is 44°, another is 56°. Can you find all other angles?