

HW

$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

Mw Na = 23 Mw O = 16 Mw S = 32 Mw H = 1

/w NaOH =

 \bullet

Oxides

- Sulfur (IV) oxide SO_2
- Sulfur (VI) oxide SO₃
- Carbon (IV) oxide CO₂
 - Calcium oxide CaO
- Iron (III) oxide Fe_2O_3
 - Potassium oxide K₂O
- Magnesium oxide MgO

ENT	rs				2 He Helium
13 5 B Boron 10.811	14 6 C Carbon 12.011	15 7 N Nitrogen 14.007	16 8 0 0xygen 15.999	17 9 F Fluorine 18.998	4.003 10 Ne Neon 20.180
13 Al Aluminum 26.982	14 Si Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Ar Argon 39.948
31 Gallium 69.723	32 Ge Germanium 72.631	33 As Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798
49 In Indium 114.818	50 Sn 118.711	Sb Antimony 121.760	52 Tellurium 127.6	53 lodine 126.904	54 Xe Xenon 131.294
81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018

Acids - a compound that has one or several hydrogen atoms and a conjugate base in its molecule

Acids can replace hydrogen atoms by metal atoms

 $H_2SO_2 + Mg = MgSO_4 + H_2$

 $H_2SO_2 + MgO = MgSO_4 + H_2O$

Reactions of acids

Acids react with bases forming salts and water (neutralization reaction):

 $H_2SO_2 + Mg(OH)_2 = MgSO_4 + H_2O$

 $2H_3PO_4 + 3Ca(OH)_2 = Ca_3(PO_4)_2 + 6H_2O$

Types of acids

Acids with and without oxygen

Oxyacids	Hydracids
H_2SO_4 - sulfuric acid	HF - hydrofluoric acid
H_2SO_3 - sulfurous acid	HCI - hydrochloric acid
HNO_3 - nitric acid	HBr - hydrobromic acid
H_3PO_4 - phosphoric acid	HI - hydroiodic acid
H_2CO_3 - carbonic acid	H ₂ S - hydrosulfuric acid

Types of acids

By the number of protons that they can dissociate into the solution: Monoprotic (monobasic), diprotic (dibasic), triprotic (tribasic)

Oxyacids	Hydracids
H_2SO_4 - sulfuric acid	HF - hydrofluoric acid
H_2SO_3 - sulfurous acid	HCI - hydrochloric acid
HNO_3 - nitric acid	HBr - hydrobromic acid
H_3PO_4 - phosphoric acid	HI - hydroiodic acid
H_2CO_3 - carbonic acid	H ₂ S - hydrosulfuric acid

 $H_3PO_4 + 3 NaOH = Na_3PO_4 + 3H_2O$

 $H_2SO_2 + 2 NaOH = Na_2SO_4 + H_2O$

 $HCI + KOH = KCI + H_2O$

 $HNO_3 + NaOH = NaNO_3 + H_2O$

Acids reactions with basic oxides (neutralization reactions)

 $2HCI + CaO \rightarrow CaCl_2 + H_2O$

$2H_3PO_4 + Fe_2O_3 \rightarrow 2FePO_4 + 3H_2O$

Acids reactions with metals

Not all metals react with acids - Metal should be sufficiently active and acid should be sufficiently strong

HCl + Hg \rightarrow no reaction

 $2HCl + Na \rightarrow 2 NaCl + H_2$

 $H_2SO_4 + Zn \rightarrow ZnSO_4 + H_2$

	Reactivity Series of Metals			
1	- Potassium	к	(Most reactive metal)	
	Sodium	Na	1	
	Calcium	Ca		
These motels are	Magnesium	Mg		
These metals are more reactive	Aluminium	Al		
than hydrogen	Zine	Zn		
	Iron	Fe		
	Tin	Sn		
	Lead	Pb		
	[Hydrogen]	[H]		
	Copper	Cu		
These metals are	Mercury	Hg		
less reactive than -	Silver	Ag		
hydrogen	Gold	Au	(Least reactive metal)	

How to remember the Reactivity Series?

Please Stop Calling Me Α Careless Zebra Instead Try Learning How Copper Saves Gold

Potassium Sodium Calcium Magnesium Aluminium (Carbon) Zinc ron Tin Lead (Hydrogen) Copper Silver Gold

Strong Acids

sciencenotes.org

This class uses the materials from the following books: "
Manyuilov and Rodionov "Chemistry for children and adults" Kuzmenko, Eremin, Popkov "Beginnings of chemistry" <u>http://school-collection.edu.ru</u> (experiments)