

HW

$\frac{7.4 \text{ g}}{\text{Ca}(\text{OH})_2} + \text{H}_2\text{SO}_4 = \text{CaSO}_4 + 2\text{H}_2\text{O}$

Mw Ca = 40 Mw O = 16 Mw S = 32 Mw H = 1

Mw Ca(OH)₂ =

 \bullet

Oxides

- Sulfur (IV) oxide SO_2
- Sulfur (VI) oxide SO₃
- Carbon (IV) oxide CO₂
 - Calcium oxide CaO
- Iron (III) oxide Fe_2O_3
 - Potassium oxide K₂O
- Magnesium oxide MgO

 $S + O_2 \xrightarrow{} SO_2 \xrightarrow{} S + H_2O$

Acidic oxides

Acidic oxides can form acids: $SO_2 + H_2O = H_2SO_3$ (sulfurous acid) $SO_3 + H_2O = H_2SO_4$ (sulfuric acid) $CO_2 + H_2O = H_2CO_3$ (carbonic acid) $N_2O_3 + H_2O = 2HNO_2$ (nitrous acid) SeO₃ + H_2O = H_2SeO_4 (selenic acid)

13	14	15	16	17	
5 B Boron 10.811	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Neon 20.180
13 Al Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Ar Argon 39.948
31 Gallium 69.723	32 Ge Germanium 72.631	33 As Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798
49 In Indium 114.818	50 Sn Tin 118.711	Sb Antimony 121.760	52 Te Tellurium 127.6	53 I lodine 126.904	54 Xe Xenon 131.294
In	Sn	Sb	Te	Iodine	Xe

Some acidic oxides do not react with water but all of them react with bases forming salts and water.

 $SiO_2 + H_2O \rightarrow$ no reaction

 $SiO_2 + 2NaOH = Na_2SiO_3 + H_2O$ (salt of hypothetical metasilicic acid)

13	14	15	16	17	
5 B Boron 10.811	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
13 Al Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Ar Argon 39.948
31 Gallium 69.723	32 Ge Germanium 72.631	33 As Arsenic 74,922	34 Se Selenium 78.971	35 Br Bromine 79,904	36 Kr Krypton 83.798
49 In Indium 114.818	50 Sn Tin 118.711	Sb Antimony 121.760	52 Tellurium 127.6	53 Iodine 126.904	54 Xe Xenon 131.294
In	Sn	Sb	Te	Iodine	Xe

Basic oxides Formed only by metals

Basic oxides can form bases:

 $Li_2O + H_2O = 2LiOH$ CaO + H₂O = Ca(OH)₂

Many basic oxides are not soluble, but they can react with acids:

 $ZnO + H_2O = no reaction$

 $ZnO + 2HCI = ZnCI_2 + H_2O$

Basic oxides react with acids forming salts and water

Each basic oxide has a corresponding base:

 $MgO - Mg(OH)_2$ $Fe_2O_3 - Fe(OH)_3$

 $Na_2O - NaOH$

Acids - a compound that has one or several hydrogen atoms and a conjugate base in its molecule

Acids can replace hydrogen atoms by metal atoms

 $H_2SO_2 + Mg = MgSO_4 + H_2$

 $H_2SO_2 + MgO = MgSO_4 + H_2O$

Reactions of acids

Acids react with bases forming salts and water:

 $H_2SO_2 + Mg(OH)_2 = MgSO_4 + H_2O$

 $2H_3PO_4 + 3Ca(OH)_2 = Ca_3(PO_4)_2 + 6H_2O$

This class uses the materials from the following books: "
Manyuilov and Rodionov "Chemistry for children and adults" Kuzmenko, Eremin, Popkov "Beginnings of chemistry" <u>http://school-collection.edu.ru</u> (experiments)