

The equation's coefficients let us find relative masses of products and reactants.

The calculation uses a unit called <u>Mole.</u>

One mole of a substance is the amount whose mass equals **the molecular or atomic weight** of the substance <u>expressed in grams</u>

				4	MOLE	CULA	?" WE	IGHT	M	OLAR	WEIG	HT			_			
	C	2			-	32 A	MU			32 6	RAM	15	1	OH, 1	5)		2	
	5	iO2			6	50 A	MU			60 6	RAM	15	TH	A TA	LL?	2	-	
	A	12512	0,(OH)4	2	58 A	MU		2	58 6	RAN	15		~	5	Y	-7	54
	F	e				56 A	MU			56 6	RAM	15				A	JV	
	P	ROT	ON			1 A	MU			1	GRA	M						
	1A 1 Hydrogen 1.008 3 Lithium 6.941	2 IIA 2A 4 Beryllium 9.012					Peri	odic T	able	of the	e Eler	nents	13 IIIA 3A 5 B Boron 10.811	14 IVA 4A 6 Carbon 12.011	15 VA 5A 7 Nitrogen 14.007	16 VIA 6A 8 O Xygen 15.999	17 VIIA 7A 9 Fluorine 18.998	8A 2 Helium 4.003 10 Neon 20.180
1	11 Na Sodium	12 Mg Magneslum 24 305	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 	10	11 IB	12 IIB	13 Aluminum 26.082	14 Silicon	15 P Phosphorus	16 Sulfur 32.066	17 Cl Chlorine	18 Ar Argon
	19 K Potassium	20 Calcium	21 Scandium	22 Ti Titanium	23 Vanadium	24 Cr Chromium	25 Mn Manganese	Fe Iron	27 Co Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Gallium	32 Germanium	33 As Arsenic	34 Selenium	35 Br Bromine	36 Kr Krypton
	37 Rb Rubidium	38 Strontium	44.956 39 Yttrium	40 Zr Zirconium	41 Niobium	42 Mo	43 TC Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In	50 Sn Tin	51 Sb Antimony	52 Tellurium	79.904	54 Xe Xenon
	84.468 55 CS Cesium	87.62 56 Ba Barium	88.906 57-71	91.224 72 Hafnium	92.906 73 Tantalum	95.95 74 W Tungsten	98.907 75 Re Rhenium	101.07 76 Osmium	102.906 77 Iridium	106.42 78 Pt Platinum	107.868 79 Au _{Gold}	112.414 80 Hg Mercury	114.818 81 Tl Thallium	118.711 82 Pb Lead	121.760 83 Bismuth	127.6 84 Po Polonium	126.904 85 At Astatine	131.249 86 Radon
	132.905 87 Francium 223.020	137.328 88 Radium 226.025	89-103	178.49 104 Rf Rutherfordium [261]	180.948 105 Dubnium [262]	183.84 106 Sg Seaborgium [266]	186.207 107 Bh Bohrium [264]	190.23 108 HS Hassium [269]	192.217 109 Mt Meitnerium [268]	195.085 110 Ds Darmstadtiur [269]	196.967 111 Rog Roentgeniun [272]	200.592 112 Cn Copernicium [277]	204.383 113 Uut Ununtrium unknown	207.2 114 Flerovium [289]	208.980 115 Ununpentium unknown	[208.982] 116 LV Livermorium [298]	209.987 117 UUUS Ununseptium unknown	118 Ununoctium unknown

Making pottery and bricks

mullite $3Al_2Si_2O_5(OH)_4(s) \xrightarrow{\Delta} Al_6Si_2O_{13}(s) + 4SiO_2(s) + 6H_2O(g)$

Kaolinite from the lake

The castaways mixed clay with sand, molded 3000 bricks in 2 days and baked them by the heat of fire.

Mass balance table

reactants	Molar weight	products	Molar weight
$3 \text{ MOL Al}_2 \text{Si}_2 \text{O}_5 (\text{OH})_4$	3 x	1 MOL Al ₆ Si ₂ O ₁₃	426 g
Sec. 2 million		4 MOL SIO2	4 ×
		6 MOL H2O	6 x
TOTAL	774 g	TOTAL	

Atomic mass (amu): Al – 27 Si – 28 O – 16 H – 1

The table says that 774 g of kaolin clay makes 426 + 240 = 666 g of pottery

So 1 g kaolin makes (666/774) g = 0.86 g of pottery

And 100 kg makes (0.86) (100 kg) (1000 g/kg) = 86,000 g = 86 kg

We can equally well work backward. If we want 100 kg of pottery, how much wet clay should we mix up?

Molar gas volume. Avogadro's law

One mole of anything contains 6.02x10²³ particles

HCl $_{(gas)}$ + NH_{3 (gas)} \rightarrow NH₄Cl $_{(solid)}$ 2H_{2 (gas)} + O_{2 (gas)} \rightarrow 2H₂O $_{(gas)}$ H_{2 (gas)} + Cl_{2 (gas)} \rightarrow 2HCl $_{(gas)}$

Equal gas volumes (at equal temperature and pressure) contain the same number of particles

 1 mole of any gas takes a volume of <u>22.4 liters</u> at "normal conditions". This is a molar gas volume under normal conditions.

Normal conditions are temperature of O°C
(273 K) and pressure of 1 atm (101 325 Pa)

Clapeyron-Mendeleev equation

pV = nRT n - gas mole number p - gas pressure (atm) V - gas volume (liters) T - temperature (K) R - gas constant (0.08211 x atm/mole x K)

Example

A closed flask of 2.6 L contains oxygen under the pressure of 2.3 atm and temperature of 26°C. How many moles of O_2 are there in the flask?

pV = nRT

n = PV/RT

 $n = (2.3 \text{ atm} \times 2.6 \text{ L})/(0.0821 (L \times \text{ atm/mole} \times \text{K}) \times 299 \text{ K})$ $273^{\circ}C + 26^{\circ}C = 299 \text{ K}$ This class uses the materials from the following books: Larry Gonick and Graig Criddle "The cartoon guide to chemistry" Manyuilov and Rodionov "Chemistry for children and adults" Kuzmenko, Eremin, Popkov "Beginnings of chemistry" <u>http://school-collection.edu.ru</u> (experiments)