

A complete outer shell, <u>ns²np⁶</u>, is energetically more advantageous than an incomplete one.

We call it the **<u>RULE OF EIGTH</u>**: at atom tends to pick up or give away just enough electrons to make eight in its outer shell – AN <u>**ELECTRON OCTET**</u>.

Atoms form chemical bonds by combining such number of electrons that allows them to obtain an electron configuration of noble elements

 Hydrogen binds into a molecule resulting in the electron configuration of helium (1s²)
Chlorine combines into a molecule with the electron configuration of argon (...3s²3p⁶)

Ionic bonds

Different bond types

Polar covalent bond

 It is an intermediate between covalent and ionic bonds and like for ionic bond it forms between different atoms

non-shared electrons

SO₂ molecule with polar covalent bond

Electronegativity is a relative ability of atoms to attract electrons while binding to other atoms. I tis an ability to polarize a covalent bond Bond's polarity depends on the difference in electronegativity between two atoms. Bigger differences mean more polarity, with a difference of 2 or more being considered ionic

SAMPLE ELECTRONEGATIVITIES			
H 2.1	Na 0.9		
Li 1.0	Mg 1.2		
6 2.5	5 2.5		
N 3.0	a 3.0		
0 3.5	K 0.8		
F 4.0	Ca 1.0		

H : H Cl : Cl H :Cl Na $^+$ Cl $^-$

> Increased bond polarity results in different properties of the substance - hydrogen chloride (polar covalent bond) is a gas at room temperature while sodium chloride(ionic bond between the atoms) is a solid crystalline substance

Consider crystals of calcium chloride – CaCl₂

Some substances do not form separate molecules but make a continues network of repeating atoms (metals) or units (e.g. quartz). In this case the formulas of such matter are those of the repeating units – Cu, or SiO₂

Multiple bonds

- If the octet rules requires multiple bonds can form between two atoms (each bond is two shared electrons)
 - These bonds are called double or triple bonds
- E.g. oxygen can form a molecule from two oxygen atoms only when there are two shared electron pairs between the atoms:

Structural formulas identify the location of chemical bonds between the atoms of a molecule. A structural formula consists of symbols for the atoms connected by short lines that represent chemical bonds — one, two, or three lines standing for single, double, or triple bonds, respectively. How many electron pairs do atoms of nitrogen need to get the octet?

₇N electron configuration:

Multiple bonds

Bond	Bond length (A=10 ⁻⁸ cm)	Bond strength, kJ
Single (N-N)	1.45	58.5
Double (N=N)	1.25	456
Triple (N≡N)	1.098	945

Bond order is the number of chemical bonds (shared electron pairs) between a pair of atoms and the bond stability. The highest bond order is 3.

Valence

<u>The valence or valency</u> of an element is a measure of its combining power with other atoms when it forms molecules Or <u>The valence</u> is the number of electron pairs that binds the atom with other atoms

This class uses the materials from the following books: Larry Gonick and Graig Criddle "The cartoon guide to chemistry" Manyuilov and Rodionov "Chemistry for children and adults" Kuzmenko, Eremin, Popkov "Beginnings of chemistry"