Nucleic Acids: Hereditary Material

All cells <u>store information</u> required to build and maintain the cell (*genetic information*) and <u>constantly use it</u>.

Laws of Mendelian Inheritance

Gregor Mendel, 1856-1863:

		A	а
ea Parent	A	AA	Aa
remale P	а	aA	aa

A = Yellow Seeds a = Green Seeds Because a is recessive, only aa has green seeds. An Example of a Mendelian Genetic Trait pea plant experiments

- Cultivated and tested some 29,000 pea plants in the monastery's 2 hectares (4.9 acres) experimental garden.
- Worked with seven characteristics: plant height, pod shape and color, seed shape and color, and flower position and color.
- Law of Segregation: one random allele (gene variation) from each parent.
- Law of Independent Assortment: alleles for different traits are independent.
- Law of Dominance: some alleles are dominant while others are recessive; an organism with at least one dominant allele will display the effect of the dominant allele.

"Father of modern genetics"

DNA Discovery

 Swiss physician Friedrich Miescher discovered DNA ("nuclein") in 1869, athough <u>scientists</u> did not understand what it was until...

...1943: Avery-MacLeod-McCarty experiment showed that DNA is the hereditary material in bacteria.

• In 1953, James Watson and Francis Crick suggested the double-helix model of DNA structure based on a single X-ray diffraction image.

DNA

DNA is a long polymer made from repeating units called nucleotides, or bases.

- Four types of bases:
 - T Thymine (Uracil in RNA)
 - A Adenine
 - **G** Guanine
 - C Cytosine
- In living organisms DNA does not usually exist as a single molecule, but instead as a pair of molecules that are held tightly together, entwined in the shape of a double helix.

 Within cells, DNA is organized into long structures called *chromosomes*.

Genome and Genetic Code

What is Genome?

- Genetic material of an organism, essentially the instructions on making proteins and RNAs.
- Inscribed in DNA: complete DNA sequence.
- Includes both the genes and the non-coding regions.

What is Genetic Code?

- The set of rules by which information encoded within DNA or RNA is translated into proteins.
- In general, the genetic code specifies 20 standard amino acids by means of triple nucleotide codons and is <u>basically the</u> same for all organisms on Earth.

What is Gene?

- The portion of the genome that codes for a <u>single</u> protein or an RNA.
- The molecular unit of heredity of a living organism.
- The size of a single gene may vary greatly, ranging from ~1,000 bases to ~1 million bases in humans.

Human DNA

- The Human Genome Project (1990-2003) produced the first complete sequences of individual human genomes.
- <u>Human genome</u> contains ~3 billion bases and ~20,500 genes.
- Over 98% of the human DNA comprises non-coding repetitive sequences (the role, functions and descriptions of these sequences are currently being investigated by scientists).

- By 2012, thousands of human genomes have been completely sequenced.
- All humans have the DNA that is 99.9% similar, however the rest 0.01% is enough to identify different individual DNA sequences (*i.e. tell apart which DNA belongs to whom*).
- Primary (and now standard routine!) applications include paternity testing as well as DNA profiling in criminal investigations.

DNA Damage

DNA is damaged up to 1 million times per cell per day.

- The cells have an elaborate type-of-damage-specific system of DNA repair that is constantly active.
- A cell that has accumulated a large amount of DNA damage, or one that no longer effectively repairs damage incurred to its DNA, can enter one of three possible states:
 - 1. an <u>irreversible state of dormancy</u>, known as *senescence*
 - 2. <u>cell suicide</u> (apoptosis) or programmed cell death
 - 3. <u>unregulated cell division</u>, which can lead to cancer

DNA Mutations

A <u>mutation</u> is a permanent change in the DNA sequence.

- Mutations can be:
 - spontaneous (by chance)

induced by mutagens (physical, chemical or biological agents)

- Factors that cause mutations:
 - <u>external</u> environmental factors such as sunlight, radiation, and smoking
 - <u>native</u> errors during DNA replication
- Mutations can lead to:
 - an evolutionary advantage of a certain genotype
 - <u>disease</u>, developmental delays, <u>structural abnormalities</u>, or other negative effects.

Example: Sickle cell anemia is a disorder in which the body makes sickle-shaped red blood cells as a result of DNA mutation.

DNA Half-Life

In 2012, researchers have calculated that DNA from bones has a <u>521 year half-life</u>, which means that the oldest clone-able samples of DNA could be no more than 2 million years old.

This result rules out any possibility of ever replicating dinosaurs, as the youngest dinosaurs were around more than 65 million years ago...

Miller–Urey experiment, 1953: chemical origins of life

Stanley L. Miller Harold C. Urey

- Test for the occurrence of chemical origins of life by <u>simulating the conditions</u> thought at the time to be present on <u>the early Earth</u>.
- The experiment used water (H₂O), methane (CH₄), ammonia (NH₃), and hydrogen (H₂) all sealed inside a sterile loop array of glass flasks; one flask was half-full of liquid water ("ocean") and another flask contained a pair of electrodes. The liquid water was heated to induce evaporation, sparks were fired between the electrodes to simulate "lightning through the atmosphere" and water vapor; then water could "precipitate" that is condense and trickle back into the first flask in a continuous cycle.
- After two weeks: 10–15% of the carbon was now in the form of organic compounds; >20 amino acids formed; sugars were also formed. However, *nucleic acids were not formed* within the reaction...