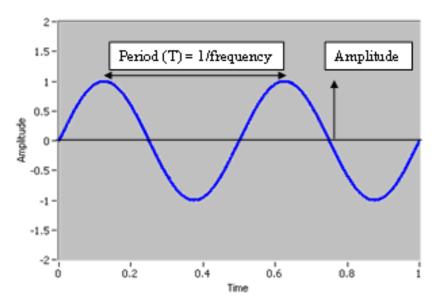
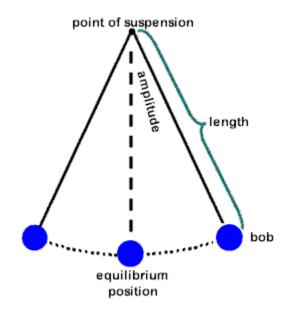

Oscillations

Many physical systems near equilibrium are describe by the following **Differential Equation**:

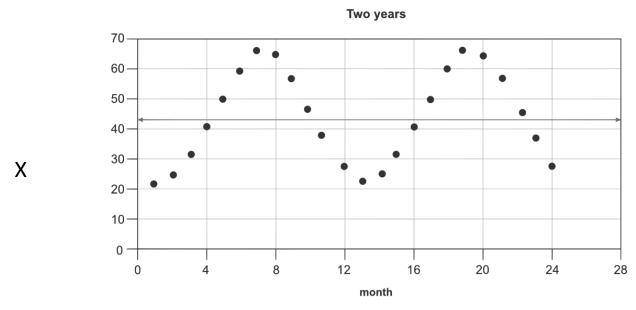
$$x = -\varpi^2 x$$


This is the second time derivative of x (acceleration)

By using analogy with rotation, we have found in class that solution to this equation is an oscillatory motion with period $T=2\pi/\omega$:


$$T = \frac{1}{f} = \frac{2\pi}{\varpi}$$

Parameter	Formula	Units
Period	Т	S
Frequency	f=1/T	1/s=Hz (Hertz)
Angular frequency	$ω$ =2 π f=2 π /T	1/s
Amplitude	А	varies


Example: Period of small oscillations of a pendulum

$$T = 2\pi \sqrt{\frac{L}{g}}$$
 L is length.

Homework

Problem 1 Write a formula that would fit the plot x(t), shown below (t in months):

Proble

- a) Design and builds a pendulum that has a period T=1s.
- b) Measure this period. Make several measurements, find the average and estimate the error in your experiment.
- c) Have this pendulum around during the time of our next class

THINK ABOUT ANY QUESTION YOU'D LIKE TO GET AN ASWER TO.