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Algebra.  

Elements of Set Theory.  

Inclusion-exclusion principle. 

The inclusion-exclusion principle generalizes the familiar method of obtaining 
the number of elements in the union of two finite sets. For two sets, it is 
symbolically expressed as, 

|𝐴 + 𝐵| = |𝐴| + |𝐵| − |𝐴𝐵| 

where |𝐴|, in general, denotes the cardinality, or cardinal number of the set 𝐴.  
The cardinal number extends the concept of the number of elements in a set 
to infinite sets. In formal set theory, it is defined in such a way that any 
method of counting sets using it gives the same result. For finite sets it is 
simply identified with the number of elements in a set, |𝐴| = 𝑛(𝐴).  

For three sets, 

|𝐴 + 𝐵 + 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴𝐵| − |𝐵𝐶| − |𝐴𝐶| + |𝐴𝐵𝐶| 

This can be obtained by successive application of the rule for two sets and 
using the rules of the set algebra, in particular, using (𝐴𝐶)(𝐵𝐶) = 𝐴𝐵𝐶, 

|𝐴 + 𝐵 + 𝐶| = |(𝐴 + 𝐵) + 𝐶| = |(𝐴 + 𝐵)| + |𝐶| − |(𝐴 + 𝐵)𝐶| = |𝐴| + |𝐵| −
|𝐴𝐵| − |𝐴𝐶 + 𝐵𝐶| = |𝐴| + |𝐵| − |𝐴𝐵| − |𝐴𝐶| − |𝐵𝐶| + |(𝐴𝐶)(𝐵𝐶)|. 

And, in general, for 𝑛 sets, 

|∑ 𝐴𝑖

𝑛

𝑖=1

| = ∑|𝐴𝑖|

𝑛

𝑖=1

− ∑ |𝐴𝑖𝐴𝑗|

𝑛

1≤𝑖≤𝑗≤𝑛

+ ∑ |𝐴𝑖𝐴𝑗𝐴𝑘|

𝑛

1≤𝑖≤𝑗≤𝑘≤𝑛

… + (−1)𝑛−1|𝐴1 … 𝐴𝑛| 

The summation signs with indices denote adding intersections of all possible 
selections of pairs, triplets, quadruplets, and so on, of sets in the set of sets 
{𝐴𝑛}. This appears as a complicated expression. Some insight into its meaning 
can be obtained by considering how many times elements belonging to an 
intersection of these 𝑛 sets, 𝑋 = 𝐴1𝐴2 … 𝐴𝑛 = 𝐴1 ∩ 𝐴2 ∩ … ∩ 𝐴𝑛, are counted. 



The intersection set 𝑋 belongs to each set 𝐴𝑘 , 1 ≤ 𝑘 ≤ 𝑛, and therefore the 
first sum adds it 𝑛 times. The set 𝑋 also belongs to all pairwise intersections. 

There are (
𝑛
2

) =
𝑛!

2!(𝑛−2)!
 possible pair selections (= terms in the second sum), 

and therefore the second sum subtracts the number of elements in 𝑋, (
𝑛
2

) 

times. The third sum adds these elements (
𝑛
3

) times, and so on. As a result, 𝑋 

is counted  (
𝑛
1

) − (
𝑛
2

) + (
𝑛
3

) − ⋯ + (−1)𝑛 (
𝑛
𝑛

)  times, i.e. only once, as 

expected.  

Exercise. Show that (
𝑛
1

) − (
𝑛
2

) + (
𝑛
3

) − ⋯ + (−1)𝑛 (
𝑛
𝑛

) = 1.  

In applications, it is often useful to write the inclusion-exclusion principle 
expressed in its complementary form. That is, counting the number of 
elements complementing a union of sets to a finite universal set 𝐼 containing 
all of 𝐴𝑖 . Applying rules of set algebra and De Morgan's laws to sets we have,  
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Thus obtained inclusion-exclusion principle can be proven by mathematical 

induction.  

Theorem. ∀𝑛, 
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Proof  (Mathematical Induction).  

(1) Base case. |𝐴1| = |𝐴1|, |𝐴1 + 𝐴2| = |𝐴1| + |𝐴2| − |𝐴1𝐴2|.  
(2) Induction step. Assume the above is true for 𝑛. Then, for 𝑛 + 1,  
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Example. How many natural numbers 𝑛 ≤ 100  are not divisible by 3, 4, or 5? 

For 𝑛 ≤ 100, there are 33 numbers divisible by 3, |𝐴3| = 33, 25 divisible by 4, 

|𝐴4| = 25, 20 divisible by 5, |𝐴5| = 20. Also, there are 8 numbers divisible by 

3∙4=12, 6 divisible by 3∙5=15, 5 divisible by 4∙5=20, and 1 divisible by 

3∙4∙5=60. Hence, the answer is 100 − |𝐴3 + 𝐴4 + 𝐴5| = 100 − (33 + 25 +

20 − 8 − 6 − 5 + 1) = 40. 

Application to the theory of probability. 

The set of all possible outcomes of an experiment can be denoted by 𝐼, while 
the subset of particular “favorable” outcomes of interest we denote 𝐴  𝐼. 
Then, the probability of a favorable outcome is given by the ratio of the 
number of elements in the set 𝐴, 𝑛(𝐴), to the number all possible outcomes, 
i.e. the number of elements in the set 𝐼, 𝑛(𝐼), where 𝑛(𝐴) ≤  𝑛(𝐼), 

𝑃(𝐴) =  
𝑛(𝐴)

𝑛(𝐼)
 

For example, if 𝐴 is the set of spades in the deck of 52 cards, then the 
probability of drawing a spade from the well-shuffled deck is  

𝑃 =  
𝑛(𝑠𝑝𝑎𝑑𝑒𝑠)

𝑛(𝑐𝑎𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑐𝑘)
=

13

52
=

1

4
.  

Using the algebra of sets can facilitate calculating the probabilities when the 
probabilities of certain outcomes are known, and the probability of other set 



of outcomes is required. For example, knowing 𝑃(𝐴), 𝑃(𝐵) and 𝑃(𝐴𝐵) allows 
calculating 

𝑃(𝐴 + 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴𝐵). 

Similarly, for three subsets, 𝐴, 𝐵, 𝐶, we obtain, 

𝑃(𝐴 + 𝐵 + 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − 𝑃(𝐴𝐵) − 𝑃(𝐵𝐶) − 𝑃(𝐴𝐶) + 𝑃(𝐴𝐵𝐶). 

Exercise. Three digits, 1, 2, 3, are written down in random order. What is the 
probability that at least one digit will occupy its place? What is the probability 
for four digits? Five? What is the probability for 𝑛 digits?  

Arrangements and Derangements. 

Arrangements of a subset of 𝑘 distinct objects chosen from a set of 𝑛 distinct 

objects are 𝐴𝑛
𝑘 =

𝑛!

( 𝑛−𝑘)!
 permutations [order matters] of distinct subsets of 𝑘 

elements chosen from that set. The total number of arrangements of any 
subset of a set of 𝑛 distinct objects is the number of unique sequences [order 
matters] that can be formed from any subset of 0 ≤ 𝑘 ≤  𝑛 objects of the set,  

𝑎𝑛 = ∑ 𝐴𝑛
𝑘

𝑛

𝑘=0

= ∑ 𝑘! (
𝑛
𝑘

)

𝑛
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= ∑
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( 𝑛 − 𝑘)!

𝑛

𝑘=0

= 𝑛! ∑
1
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𝑛

𝑘=0

≡¡ 𝑛 

This number is obviously larger than the number of permutations of 𝑛 distinct 
objects given by 𝑛!. Hence, a supfactorial, ¡ 𝑛,  notation has been suggested. It 
is easy to check that ¡ 𝑛  satisfies the following recurrence relation, 

¡ 𝑛 = 𝑛 ∙¡ (𝑛 − 1) + 1 

For very large 𝑛 ≫ 1, the supfactorial is nearly a constant times the factorial, 
¡ 𝑛 ≈ 𝑒 ∙ 𝑛! 

Exercise. How many possible passwords can be composed using an alphabet 
of 𝑛 = 26 letters, if a password is required to have at least 8 characters and 

have no repeating characters? Answer: 𝑎26 − 𝑎7 = 26! ∑
1

𝑘!

26
𝑘=8 .  

A (complete) derangement is a permutation of the elements of a set of distinct 
elements such that none of the elements appear in their original position. The 



number of derangements of a set of 𝑛 distinct objects, i. e. the number of 
permutations with no rencontres, or the number of permutations of 𝑛 distinct 
objects with no fixed point, is called the subfactorial, ! 𝑛. It can be obtained by 
using the inclusion-exclusion principle. The universal set of permutations 𝑃 
has 𝑛! elements. Denote 𝑃1 the subset of permutations that keep element 1 in 
its place, 𝑃2 those that keep element 2 in its place, 𝑃𝑘  that keep element 𝑘 in its 
place, and so on. The set of permutations that keep at least 1 element in its 
original place is then, 𝑃>1 = 𝑃1 ⋃ 𝑃2 ⋃ 𝑃3 … ⋃ 𝑃𝑛. The number of derangement 
is given by the number of elements complementing this set to 𝑃, 

𝑑𝑛 = |𝑃| − |∑ 𝑃𝑖
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Using the fact that |𝑃𝑖|, |𝑃𝑖𝑃𝑗|, |𝑃𝑖𝑃𝑗𝑃𝑙|, … are equal to (𝑛 − 1)!, (𝑛 − 2)!, (𝑛 −

3)!, …, correspondingly, for every choice of 𝑖, {𝑖, 𝑗}, {𝑖, 𝑗, 𝑙}, … and there are 

(
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) , (
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) , (
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) , … (
𝑛
𝑘

) , … such choices, respectively, we obtain, 
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𝑛
1
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The number of derangements also obeys the following recursion relations, 

𝑑𝑛 = 𝑛 ∙ 𝑑𝑛−1 + (−1)𝑛, or, ! 𝑛 = 𝑛 ∙ ! (𝑛 − 1) + (−1)𝑛, and,  

𝑑𝑛 = (𝑛 − 1) ∙ (𝑑𝑛−1 + 𝑑𝑛−2), or, ! 𝑛 = (𝑛 − 1) ∙ (! (𝑛 − 1) + ! (𝑛 − 2)). 

Note that the latter recursion formula also holds for 𝑛!; for very large 𝑛 ≫ 1, 

the subfactorial is nearly a factorial divided by a constant, ! 𝑛 ≈
𝑛!

𝑒
. Starting 

with 𝑛 = 0, the numbers of derangements of a set of 𝑛 elements are, 

1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 
2290792932, ... 



Exercise. A group of 𝑛 men enter a restaurant and check their hats. The hat-
checker is absent minded, and upon leaving, redistributes the hats back to the 
men at random. What is the probability, 𝑃𝑛, that no man gets his correct hat?  

This is the old hats problem, which goes by many names. It was originally 
proposed by French mathematician P. R. de Montmort in 1708, and solved by 
him in 1713. At about the same time it was also solved by Nicholas Bernoulli 
using inclusion-exclusion principle.  

An alternative solution is to devise a recurrence by noting that for a full 
derangement, every of 𝑛 men should get somebody else’s hat. Assume man 𝑥 
got the hat of man 𝑦. In the case that man 𝑦 got the hat of man 𝑥, there are 
𝑑𝑛−2 such possible derangements. However, we also have to account for the 
possibility that man 𝑦, whose hat went to man 𝑥, did not get “his” hat of man 𝑥 
in return. This gets us to the situation of the full derangement for 𝑛 − 1 men. 
Adding the two possibilities and multiplying with 𝑛 − 1 possible choices of 

man 𝑦 we obtain, 𝑑𝑛 = (𝑛 − 1)(𝑑𝑛−1 + 𝑑𝑛−2), or, 𝑃𝑛 = (
𝑛−1

𝑛
𝑃𝑛−1 +

1

𝑛
𝑃𝑛−2), 

wherefrom the above expression for the derangement can be derived.  

If some, but not necessarily all, of the items are not in their original ordered 
positions, the configuration can be referred to as a partial derangement. The 
number of partial derangements with 𝑘 fixed points (rencontres) is,  

𝑑𝑛,𝑘 = (
𝑛
𝑘

) 𝑑𝑛−𝑘 = (
𝑛
𝑘

) ∑
(−1)𝑝

𝑝!

𝑘

𝑝=0

 

Here is the beginning of this array. 

𝒏 𝒌⁄  0 1 2 3 4 5 6 7 

0 1        

1 0 1       

2 1 0 1      

3 2 3 0 1     

4 9 8 6 0 1    

5 44 45 20 10 0 1   

6 265 264 135 40 15 0 1  

7 1854 1855 924 315 70 21 0 1 

 


