Homework for April 26, 2020.

Algebra. Complex numbers.

Please, complete the previous homework assignments from this year. Review the classwork handout on complex numbers. Complete the classwork exercises and solve the following problems.

Problems.

1. Compute:

a.
$$(2-i)^{-1}$$

b.
$$\frac{-i}{4\sqrt{3}-i}$$

C.
$$\frac{1}{3-4i}$$

d.
$$(1+i)^{-10}$$

2. Solve the following equations in complex numbers:

a.
$$z^2 = -i$$

b.
$$z^2 = 2\sqrt{3} + 2i$$

c.
$$z^2 - z - 1 = 0$$

d.
$$z^2 + z - 1 = 0$$

Geometry. Vectors.

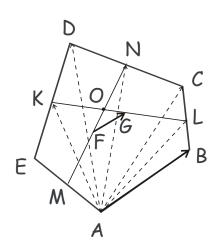
Please, complete problems from the previous homework assignment. Review the classwork handout on vectors. Solve the following problems.

Problems.

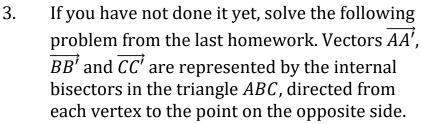
1. In a pentagon ABCDE, M, K, N and L are the midpoints of the sides AE, ED, DC, and CB, respectively. F and G are the midpoints of thus obtained segments MN and KL (see Figure). Show that the segment FG is parallel to AB and its length is $\frac{1}{4}$ of that of AB, $|FG| = \frac{1}{4}|AB|$.

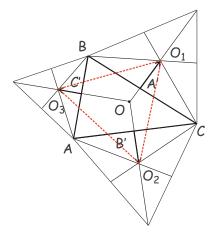
Hint: use the results of one of the previous problems, expressing the median of a triangle via adjacent sides.

2. Three equilateral triangles are erected externally



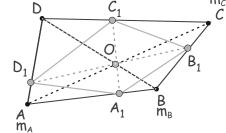
on the sides of an arbitrary triangle ABC. Show that triangle $O_1O_2O_3$ obtained by connecting the centers of these equilateral triangles is also an equilateral triangle (Napoleon's triangle, see Figure).



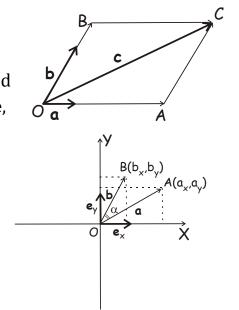


Express the sum, $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'}$ through vectors \overrightarrow{AB} and \overrightarrow{AC} (and the sides of the triangle, |AB| = c, |BC| = a, |CA| = b). For what triangles ABC does this sum equal 0?

- 4. Let A, B and C be angles of a triangle ABC.
 - a. Prove that $\cos A + \cos B + \cos C \le \frac{3}{2}$.
 - b. *Prove that for any three numbers, m,n,p, $2mn\cos A + 2np\cos B + 2pm\cos C \le m^2 + n^2 + p^2$ m_D
- 5. *A quadrilateral $A_1B_1C_1D_1$ is inscribed in the quadrilateral ABCD in such a way that diagonals of both quadrilaterals intersect at the same crossing point, O (see Figure). Show that this is possible if $\frac{|AA_1|}{|A_1B|}\frac{|BB_1|}{|B_1C|}\frac{|CC_1|}{|C_1D|}\frac{|DD_1|}{|D_1A|}=1.$



- 6. Prove that if vectors \vec{a} and \vec{b} satisfy $||\vec{a} + \vec{b}|| = ||\vec{a} \vec{b}||$, then $\vec{a} \perp \vec{b}$.
- 7. Show that for any two non-collinear vectors \vec{a} and \vec{b} in the plane and any third vector \vec{c} in the plane, there exist one and only one pair of real numbers (x,y) such that \vec{c} can be represented as $\vec{c} = x\vec{a} + y\vec{b}$.
- 8. Derive the formula for the scalar (dot) product of the two vectors, $\vec{a}(x_a, y_a)$ and $\vec{b}(x_b, y_b)$, $(\vec{a} \cdot \vec{b}) = x_a x_b + y_a y_b$, using their representation via two perpendicular vectors of

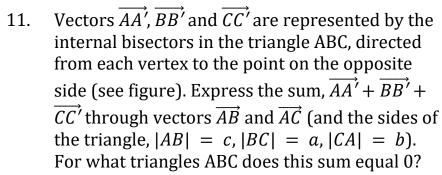


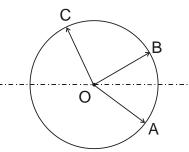
unit length, \vec{e}_x and \vec{e}_y , directed along the X and the Y axis, respectively.

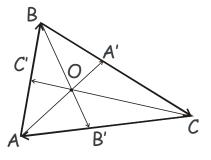
- 9. Given vectors \vec{a} and \vec{b} , show that vector $\vec{a} \frac{1}{b^2} (\vec{a} \cdot \vec{b}) \vec{b}$ is perpendicular to \vec{b} .
- 10. Vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are represented by the radial segments directed from the centre O of the circle to points A, b and C on the circle (see Figure). What are the angles AOB, AOC and COB, if a. $\overrightarrow{OC} = \overrightarrow{OA} \overrightarrow{OB}$

a.
$$\overrightarrow{OC} = \overrightarrow{OA} - \overrightarrow{OB}$$

b. $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$







- 12. Given triangle ABC, find the locus of points M such that $(\overrightarrow{AB} \cdot \overrightarrow{CM}) + (\overrightarrow{BC} \cdot \overrightarrow{AM}) + (\overrightarrow{CA} \cdot \overrightarrow{BM}) = 0$. Using this finding, prove that three altitudes of the triangle ABC are concurrent (i.e. all three intersect at a common crossing point, the orthocenter of the triangle ABC).
- 13. Let O be the circumcenter (a center of the circle circumscribed around) and H be the orthocenter (the intersection point of the three altitudes) of a triangle ABC. Prove, that $\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$.