Homework for April 5, 2020.

Algebra.

Review the classwork handout. Complete the unsolved problems from the previous homework and classwork exercises. Solve the following problems.

- 1. Let x_1, x_2 and x_3 be distinct real numbers. Prove that there exists a unique polynomial, P(x), of degree 2 such that $P(x_1) = 1$, $P(x_2) = P(x_3) = 0$. [Hint: if $P(x_1) = 0$, then P(x) is divisible by $(x x_1)$.] Find this polynomial if $x_1 = 2$, $x_2 = -1$, $x_3 = 5$.
- 2. As before, let x_1 , x_2 and x_3 be distinct real numbers, and let y_1 , y_2 and y_3 be any collection of numbers. Prove that there is a unique quadratic polynomial f(x) such that $f(x_1) = y_1$, $f(x_2) = y_2$, $f(x_3) = y_3$. Find this polynomial if $x_1 = 2$, $x_2 = -1$, $x_3 = 5$, $y_1 = 3$, $y_2 = 6$, $y_3 = 18$. [Hint: look for in the form $f(x) = y_1 f(x_1) + \cdots$.]
- 3. Prove the following general result: given numbers $x_1, ..., x_n, y_1, ..., y_n$, such that x_i are distinct, there exists a unique polynomial f(x) of degree n 1 such that $f(x_i) = y_i$, i = 1, ..., n. (For n = 2, this is a statement that there is a unique line through two given points.)
- 4. Prove that if P(x) is a polynomial with integer coefficients, then for any integer a, b, the difference P(a) P(b) is divisible by a b.
- 5. Let x_1 and x_2 be the roots of the polynomial, $x^2 + 7x 3$. Find

a.
$$x_1^2 + x_2^2$$

b. $\frac{1}{x_1} + \frac{1}{x_2}$
c. $(x_1 - x_2)^2$
d. $x_1^3 + x_2^3$

Algebra/Trigonometry.

Please, complete the previous homework assignments from this year. Review the classwork handout on trigonometric functions. Additional reading on trigonometric functions is Read Gelfand & Saul, Trigonometry, Chapter 2 (pp. 42-54) and Chapters 6-8 (pp. 123-163),

http://en.wikipedia.org/wiki/Trigonometric_functions http://en.wikipedia.org/wiki/Sine. Solve the following problems.

Problems.

1. Simplify the following expressions:

a.
$$\frac{\sin(\pi+\alpha)\cos(\pi-\alpha)}{\sin(\alpha-\pi)\cos(\alpha+\pi)}$$

b.
$$\frac{\cot^{2}\left(\alpha+\frac{\pi}{2}\right)\cos^{2}\left(\alpha-\frac{\pi}{2}\right)}{\cot^{2}\left(\alpha-\frac{\pi}{2}\right)-\cos^{2}\left(\alpha+\frac{\pi}{2}\right)}$$

c.
$$\frac{\cot\left(\frac{3\pi}{2}-\alpha\right)}{1-\tan^{2}(\alpha-\pi)}\cdot\frac{\cot^{2}(2\pi-\alpha)-1}{\cot(\alpha+\pi)}$$

d.
$$\frac{\cos^{2}\left(\alpha-\frac{3\pi}{2}\right)}{\sin^{-2}\left(\alpha+\frac{\pi}{2}\right)-1}\cdot\frac{\sin^{2}\left(\alpha+\frac{3\pi}{2}\right)}{\cos^{-2}\left(\alpha-\frac{\pi}{2}\right)-1}$$

e.
$$\frac{\left(1+\tan^{2}\left(\alpha-\frac{\pi}{2}\right)\right)\left(\sin^{-2}\left(\alpha-\frac{3\pi}{2}\right)-1\right)}{\left(1+\cot^{2}\left(\alpha+\frac{3\pi}{2}\right)\right)\cos^{-2}\left(\alpha+\frac{\pi}{2}\right)}$$

f.
$$\frac{\sin^{2}\left(\alpha+\frac{\pi}{2}\right)-\cos^{2}\left(\alpha-\frac{\pi}{2}\right)}{\tan^{2}\left(\alpha+\frac{\pi}{2}\right)-\cot^{2}\left(\alpha-\frac{\pi}{2}\right)}$$

- 2. Solve the following equations (find all solutions):
 - a. $\sin x = \frac{1}{2}$ b. $\tan x = 1$ c. $\cos x = \frac{\sqrt{3}}{2}$ d. $\cos^2 x = \frac{1}{2}$
- 3. Solve the following equations and inequalities:
 - a. $\sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x$
 - b. $\cos 3x \sin x = \sqrt{3}(\cos x \sin 3x)$
 - c. $\sin^2 x 2\sin x \cos x = 3\cos^2 x$
 - d. $\sin 6x + 2 = 2\cos 4x$

e. $\cot x - \tan x = \sin x + \cos x$ f. $\sin x \ge \pi/2$ g. $\sin x \le \cos x$

Geometry. Vectors.

Please, complete the previous homework assignments from this year. Review the classwork handout on vectors. Solve the following problems.

Problems.

- In a triangle ABC, vectors AB, AC and BC (c, b and a) are the sides. AN, CM and BP are the medians.
 - a. Express vectors \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} through vectors **c**, **b** and **a**.
 - b. Find the sum of vectors \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} .
- 2. Solve the same problem for bisectors \overline{AN} , \overline{CM} and \overline{BP} in a triangle ABC.

- Coxeter, Greitzer, problem #9 to Sec. 2.1 (p. 31): How far away is the horizon as seen from the top of a mountain 1 mile high? (Assume the Earth to be a sphere of diameter 7920 miles.)
- 4. In a rectangle ABCD, A_1 , B_1 , C_1 and D_1 are the mid-points of sides AB, CD, BC and DA, respectively. M is the crossing point of the segments A_1B_1 , and C_1D_1 , connecting two pairs of midpoints.
 - a. Express vector $\overrightarrow{A_1M}$ through \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CD} .
 - b. Prove that *M* is the mid-point of segments, A_1B_1 and C_1D_1 , i.e. $|A_1M| = |MB_1|$ and $|C_1M| = |MD_1|$.
- 5. In a parallelogram *ABCD*, find $\overrightarrow{AB} + \overrightarrow{BD} 2\overrightarrow{AD}$.
- 6. *M* is a crossing point of the medians in a triangle *ABC*. Prove that $\overrightarrow{AM} = \frac{1}{3} (\overrightarrow{AB} + \overrightarrow{AC}).$

- 7. For three points, A(-1,3), B(2,-5) and C(3,4), find the (coordinates of) following vectors,
 - a. $\overrightarrow{AB} \overrightarrow{BC}$ b. $\overrightarrow{AB} + \overrightarrow{CB} + \overrightarrow{AC}$ c. $\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA}$
- 8. For two triangles, *ABC* and $A_1B_1C_1$, $\overrightarrow{AA_1} + \overrightarrow{BB_1} + \overrightarrow{CC_1} = 0$. Prove that medians of these two triangles cross at the same point *M*.