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Algebra.  

Polynomials and factorization. 

Little Bézout's (polynomial remainder) theorem. Factoring polynomials.  

Theorem. The remainder of a polynomial 𝑃(𝑥)  

𝑃𝑛(𝑥) =  𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥1 + 𝑎0  (1) 

divided by a linear divisor (𝑥 − 𝑎) is equal to 𝑃(𝑎).  

The polynomial remainder theorem follows from the definition of polynomial 
long division; denoting the divisor, quotient and remainder by, respectively, 
𝐺(𝑥), 𝑄(𝑥),  and 𝑅(𝑥), polynomial long division gives a solution of the 
equation 

𝑃(𝑥) = 𝑄(𝑥)𝐺(𝑥) + 𝑅(𝑥) 

where the degree of 𝑅(𝑥) is less than that of  𝐺(𝑥). If we take 𝐺(𝑥) = 𝑥 − 𝑎 as 
the divisor, giving the degree of 𝑅(𝑥) as 0, i.e. 𝑅(𝑥) = 𝑟,  

𝑃(𝑥) = 𝑄(𝑥)(𝑥 − 𝑎) + 𝑟.        (2) 

Here 𝑟  is a number. Setting 𝑥 = 𝑎, we obtain 𝑃(𝑎) = 𝑟.  

Roots of polynomials.  

Definition 1. A number 𝑎 ∈ ℝ is called a root of polynomial 𝑃(𝑥) if 𝑃(𝑎) = 0.  

As a corollary to the polynomial remainder theorem, we obtain the following 
result, the factor theorem, which provides the basis for factoring polynomials. 

Theorem (Factor Theorem). If 𝑎 is a root of a polynomial 𝑓(𝑥), then 𝑓(𝑥) is 
divisible by (𝑥 − 𝑎).  

If 𝑥1, 𝑥2, … , 𝑥𝑚 are distinct roots of a polynomial 𝑓(𝑥), then 𝑓(𝑥) is divisible by 
(𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑚).  
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Theorem. A non-zero polynomial 𝑓(𝑥) of degree 𝑛 cannot have more than n 
roots. If it does have exactly 𝑛 roots 𝑥1, 𝑥2, … , 𝑥𝑛, then 

𝑓(𝑥) = 𝑐(𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑛) 

As a corollary, we have the following result: 

Theorem. If 𝑓(𝑥) and 𝑔(𝑥) are polynomials of degree 𝑛, which have the same 
values at more than 𝑛 points, i.e., there exist 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1 such that 
∀𝑖, 1 ≤ 𝑖 ≤ 𝑛 + 1, 𝑓(𝑥𝑖) = 𝑔(𝑥𝑖), then 𝑓(𝑥) = 𝑔(𝑥). 

Theorem (rational root theorem). Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 +
⋯ + 𝑎1𝑥0 + 𝑎0 be a polynomial with integer coefficients. Then, if 𝑓(𝑥) has a 
rational root, 𝑥0 = ±𝑝/𝑞, where 𝑝 and 𝑞 are relatively prime positive integers, 
then 𝑝 is a divisor of  𝑎0 and 𝑞 a divisor of 𝑎𝑛, 𝑎0 ≡ 0𝑚𝑜𝑑(𝑝), 𝑎𝑛 ≡ 0𝑚𝑜𝑑(𝑞). 

Proof. Consider first positive 𝑥0 = 𝑝/𝑞; 𝑥0 being the root of  𝑓(𝑥), we can 
write,  

𝑎𝑛𝑝𝑛 + 𝑎𝑛−1𝑝𝑛−1𝑞 + 𝑎𝑛−2𝑝𝑛−2𝑞2 + ⋯ + 𝑎1𝑝𝑞𝑛−1 + 𝑎0𝑞𝑛 = 0 

From here, using the fact that 𝑝 and 𝑞 are relatively prime we immediately 
obtain, 𝑎0 ≡ 0𝑚𝑜𝑑(𝑝), 𝑎𝑛 ≡ 0𝑚𝑜𝑑(𝑞).  

Exercise. Extend the proof for negative 𝑥0. 

Corollary. Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 + ⋯ + 𝑎1𝑥  + 𝑎0 be a 
polynomial with integer coefficients. Then any rational root 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛 of 
𝑓(𝑥) must be integer, and must be a divisor of the constant term 𝑎0.  

Note that it is quite possible that there are no rational roots at all, i.e., that all 
roots are irrational. 

Definition 2. A number 𝑎 ∈ ℝ is called a multiple root of polynomial 𝑃(𝑥) of 
multiplicity 𝑚 if 𝑃(𝑥) is divisible (without remainder) by (𝑥 − 𝑎)𝑚 and not 
divisible by (𝑥 − 𝑎)𝑚+1.  

If 𝑥1 is the root of a polynomial 𝑃𝑛(𝑥) of degree n, then 𝑟 = 0, and  

𝑃𝑛(𝑥) = (𝑥 − 𝑥1)𝑄𝑛−1(𝑥),         (3) 



where 𝑄𝑛−1(𝑥) is a polynomial of degree n – 1. 𝑄𝑛−1(𝑥) is simply the quotient, 
which can be obtained using the polynomial long division (see last class 
handout). Since 𝑥1 is known to be the root of 𝑃𝑛(𝑥), it follows that the 
remainder 𝑟 must be zero.  

If we know m roots, {𝑥1, 𝑥2, … 𝑥𝑚}, of a polynomial 𝑃𝑛(𝑥) (why is it obvious 
that m ≤ n ?), then, applying the above reasoning recursively,  

𝑃𝑛(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑚)𝑄𝑛−𝑚(𝑥),      (4) 

So if we know that 𝑃𝑛(𝑥) given by (1) has n roots, {𝑥1, 𝑥2, … 𝑥𝑛}, then, 

𝑃𝑛(𝑥) = 𝑎𝑛(𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑛).       (5) 

If two polynomials,  

𝑃𝑛(𝑥) =  𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥1 + 𝑎0  

and  

𝑄𝑛(𝑥) =  𝑏𝑛𝑥𝑛 + 𝑏𝑛−1𝑥𝑛−1 + 𝑏𝑛−2𝑥𝑛−2 + ⋯ + 𝑏2𝑥2 + 𝑏1𝑥1 + 𝑏0  

are equal, 𝑃𝑛(𝑥) = 𝑄𝑛(𝑥), then all corresponding coefficients are equal, 

𝑎𝑛 = 𝑏𝑛, 𝑎𝑛−1 = 𝑏𝑛−1, 𝑎𝑛−2 = 𝑏𝑛−2 , … , 𝑎𝑛−𝑚 = 𝑏𝑛−𝑚, … , 𝑎1 = 𝑏1, 𝑎0 = 𝑏0. (6) 

This is the easiest way to obtain the Vieta’s theorem and its generalizations 
for higher-order polynomials.  

Vieta theorem.  

Theorem. Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 + ⋯ + 𝑎1𝑥0 + 𝑎0 be a 
polynomial with leading coefficient 1 and roots 𝑥1, 𝑥2, … , 𝑥𝑛,  

𝑓(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑛).  

Then the coefficients of 𝑓(𝑥) can be written in terms of roots, 

𝑎0 = (−1)𝑛𝑥1𝑥2 … 𝑥𝑛 

𝑎1 = (−1)𝑛−1(𝑥1𝑥2 … 𝑥𝑛−1 + 𝑥1𝑥2 … 𝑥𝑛−2𝑥𝑛 + ⋯ + 𝑥2𝑥3 … 𝑥𝑛) 



… 

𝑎𝑛−1 = −(𝑥1+𝑥2 + ⋯ + 𝑥𝑛) 

For 𝑛 = 2, quadratic equation, 𝑥2 + 𝑝𝑥 + 𝑞 = (𝑥 − 𝑥1)(𝑥 − 𝑥2), we have, 

𝑞 = 𝑥1𝑥2 and 𝑝 = −(𝑥1 + 𝑥2) 

For the cubic equation,  𝑛 = 3, where 𝑥1, 𝑥2 and 𝑥3 are the roots, 

𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = (𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3),  

𝑎0 = −𝑥1𝑥2𝑥3, 𝑎1 = 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3, 𝑎2 = −(𝑥1 + 𝑥2 + 𝑥3) 

Moreover, any expression in the roots 𝑥1, 𝑥2, … , 𝑥𝑛 which is symmetric (i.e., 
doesn't change when we permute any two roots) can be written in terms of 
the coefficients 𝑎0, 𝑎1, … , 𝑎𝑛. Example: for n = 2, 𝑥1

2 + 𝑥2
2 = ⋯ 

Cubic equation. 

Equations involving cubic polynomial are called cubic equations. 

𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, 𝑎 ≠ 0  or  

𝑥3 +
𝑏

𝑎
𝑥2 +

𝑐

𝑎
𝑥 +

𝑑

𝑎
= 0, 𝑥3 + 𝑃𝑥2 + 𝑄𝑥 + 𝑅 = 0  

Using the substitution, 𝑥 = 𝑦 −
𝑏

3𝑎
= 𝑦 −

𝑃

3
, this can be simplified to a reduced 

form,  

𝑦3 + 𝑝𝑦 + 𝑞 = 0 . 

Gerolamo Cardano derived a closed formula for the solution of this equation 
known as Cardano formula, which he published in 1545, 

𝑦 = 𝑢 −
𝑝

3𝑢
 , where 𝑢 = √−

𝑞

2
− √

𝑞2

4
+

𝑝3

27

3

, 

which is quite complicated. Derivation of Cardano is somewhat esoteric. More 
consistent derivation was given later by Lagrange. Perhaps, the best one is 
achieved by using trigonometry. All of these are quite cumbersome (you 



might look these up on Wikipedia, 
http://en.wikipedia.org/wiki/Cubic_function). 

The only other polynomial equation that is solvable in radicals is the quartic 
equation, which has been solved by Cardano’s student, Ludovico Ferrari in 
1540. The solution is known as Ferrari formula, and is even more 
cumbersome than that of Cardano. In fact, it utilizes the latter. It was 
published by Cardano in his book Ars Magna together with the cubic formula 
in 1545 (http://en.wikipedia.org/wiki/Quartic_equation). 

Biquadratic equation. 

Equations of the following type are called biquadratic equations: 

𝑎𝑥4 + 𝑏𝑥2 + 𝑐 = 0, 𝑎 ≠ 0  (1) 

If we replace 𝑥2 with y (𝑥2 = 𝑦), we will get the following quadratic equation: 

𝑎𝑦2 + 𝑏𝑦 + 𝑐 = 0, 𝑎 ≠ 0  (2) 

This equation can have two, one or no roots. If it doesn’t have any roots 
equation (1) will not have any roots also. 

Generally the roots of equation (2) are: 

𝑦 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
    𝑦 =

−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

and equation (1) will have four roots ( or two in the case when D=0 for 
equation (1)). 

𝑥2 = √−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
     𝑥2 = √−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

𝑥 = +√−𝑏+√𝑏2−4𝑎𝑐

2𝑎
    𝑥 = −√−𝑏+√𝑏2−4𝑎𝑐

2𝑎
    𝑥 = +√−𝑏−√𝑏2−4𝑎𝑐

2𝑎
    𝑥 = −√−𝑏−√𝑏2−4𝑎𝑐

2𝑎
    

Note, that equation 𝑥4 = 0 has one root x=0, equation 𝑥4 − 𝑥2 = 0 has three 
roots 𝑥1 = 0, 𝑥2 = 1, 𝑥3 = −1. 


