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Algebra.  

Number sets. Rational and irrational numbers. Real numbers.   

Some of the commonly used number sets, such as the set of all digits used in a 

particular number system, or a set of all permutations of 𝑛 objects, have finite 

number of elements, are finite. Others, are infinite. Some of the common 

number sets that we are familiar with are,  

1. The set {0,1} of two digits used in the binary number system 

2. The set {0,1,2,3,4,5,6,7,8,9} of positive integers from 0 to 9 used as the 

decimal digits  

3. The set of all natural integers, which we denote ℕ  

4. The set of all integer numbers, which we denote ℤ  

5. The set of all rational numbers, 
𝑚

𝑛
, ({𝑚, 𝑛} ∈ ℤ ∧ 𝑛 ≠ 0), which we 

denote ℚ 

6. The set of all real numbers, which we denote ℝ 

7. The set of all irrational numbers, which we denote D 

To any non-empty finite set there is a corresponding natural number, the 

number of elements in this set. Any two sets that have the same number of 

elements can be related by a bijection, and all such sets form an equivalence 

class, corresponding to this natural number. Thus, natural numbers arise as a 

characteristic of equivalence classes of finite sets having the same number of 

elements. Georg Cantor, the originator of set theory, in 1874–1884 extended 

this concept to infinite sets, where equivalence classes will be characterized 

by “number of elements” in an infinite set, which is formally infinite.  

If elements in the set can be counted by assigning a natural integer to each 

element, the set is called countable. The set that is not countable is called 

uncountable.  More rigorously, we can give the following definition.  

Definition. An infinite set is countable if a bijection exists between this set and 

the set of natural numbers ℕ.  



While rational numbers are defined straightforwardly, as ratios of integers, 

they are clearly insufficient. It is easy to observe that numbers whose squares 

are 2, 3, 5, 7, etc., are not rational numbers. Thus, a formal definition for the 

set of real numbers, ℝ, which includes such irrational numbers, is desirable. 

First, we note the following important property of rational numbers.  

If we represent rational numbers by points on the number line, the resulting 

set of the rational points is dense: there 

is no interval on the number line, no 

matter how small, which is free of 

rational points.  

Theorem. Within any interval, no matter how small, there are rational points.  

This is easily proven by subdividing the line into arbitrarily small intervals 

with rational end-points. For instance, starting with an interval with integer 

endpoints, which contains given small interval [𝐴, 𝐵], such that the distance 

from 𝐴 to 𝐵 is a small number 𝜀, we divide the original integer interval into 10 

equal parts, and then select the 1/10th segment that contains the interval 

[𝐴, 𝐵]. Repeating this procedure successively 𝑛 times, we will end up with an 

interval of length 1 10𝑛⁄ < 𝜀, which will be smaller than the interval [𝐴, 𝐵], and 

therefore will overlap with it. While division into 10 parts corresponds to 

using the decimal number notation, we could have simply halved the interval 

each time, or used any other division into rational intervals of length 1/𝑛 < 𝜀, 

such that ∃𝑚,
𝑚

𝑛
∈ [𝐴, 𝐵].  

Corollary. Any interval, no matter how small, contains infinitely many rational 

points.  

Indeed, if there would be a finite number of them, they would divide the 

interval into a finite number of smaller intervals devoid of rational numbers, 

which contradicts the above theorem. It would seem from the above that 

there must be vastly more rational numbers than there are integers: integers 

are sparse on the number line, there are infinitely many length 1 segments 

devoid of integers! Surprisingly, though, the set of the rational numbers is 

countable. This is easily proven by constructing a bijection between the set of 
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natural numbers and the cells of a table which encodes all rational numbers 

by the position of the cell along the horizontal (numerator) and the vertical 

(denominator) directions.  

Exercise. Complete the argument outlined above proving that the set of 

rational numbers is countable.  

What about the set of real numbers, which contains both rational and 

irrational numbers, is it countable? First, we have to somehow define the set 

of real numbers so as to make sure that it does indeed contains all possible 

irrational numbers. There are a number of different ways to accomplish this.  

Real numbers as infinite decimals. Consider decimals from 0 to 1, defined by 

all possible sequences of digits after the decimal point, 0. 𝑎1𝑎2𝑎3…𝑎𝑛…(𝑎𝑖 =

0,1,2,… ,9). Clearly, all other decimals, lying outside the  [0,1] interval, are 

obtained by simply adding an integer. Some of these decimals denote rational 

numbers. In particular, such are the sequences with only a finite number of 

non-zero digits, 
𝑎1𝑎2𝑎3…𝑎𝑛

10𝑛
= 0. 𝑎1𝑎2𝑎3…𝑎𝑛0000… = 0. 𝑎1𝑎2𝑎3…𝑎𝑛(0), where 

(0) denotes periodic sequence of zeros with period 1.  

Theorem. Any infinite decimal that ends in a periodically repeating sequence 

of digits, such as, 0. 𝑎1𝑎2𝑎3…𝑎𝑛(𝑥1𝑥2…𝑥𝑘) =

0. 𝑎1𝑎2𝑎3…𝑎𝑛𝑥1𝑥2…𝑥𝑘𝑥1𝑥2…𝑥𝑘𝑥1𝑥2…𝑥𝑘 …,  

represents a rational number, 

∃{𝑝, 𝑞} ∈ ℤ, 0. 𝑎1𝑎2𝑎3…𝑎𝑛(𝑥1𝑥2…𝑥𝑘) =
𝑝

𝑞
 . 

Proof. This is easily proven by expanding the fraction using the definition of 

the decimal notation,  

0. 𝑎1𝑎2𝑎3…𝑎𝑛(𝑥1𝑥2…𝑥𝑘) =
𝑎1𝑎2𝑎3…𝑎𝑛

10𝑛
+
𝑥1𝑥2…𝑥𝑘
10𝑛+𝑘

++
𝑥1𝑥2…𝑥𝑘
10𝑛+2𝑘

+⋯

=
𝑎1𝑎2𝑎3…𝑎𝑛

10𝑛
+
𝑥1𝑥2…𝑥𝑘
10𝑛+𝑘

(1 +
1

10𝑘
+

1

102𝑘
+

1

103𝑘
+⋯) +⋯, 



which gives an infinite geometric series with the ratio, 𝑞 =
1

10𝑘
. For a 

geometric series with 𝑞 < 1, we can use the following limiting procedure to 

obtain the sum of an infinite series by extrapolating the known result for the 

finite geometric series, 

1 + 𝑞 + 𝑞2 +⋯
𝑛

 
→∞
←   1 + 𝑞 + 𝑞2 +⋯+ 𝑞𝑛 =

1 − 𝑞𝑛+1

1 − 𝑞

𝑛
 
→∞
→   

1

1 − 𝑞
 . 

We thus obtain the representation of a cyclic decimal in the form of a rational 

fraction,  

0. 𝑎1𝑎2𝑎3…𝑎𝑛(𝑥1𝑥2…𝑥𝑘) =
𝑎1𝑎2𝑎3…𝑎𝑛

10𝑛
+
𝑥1𝑥2…𝑥𝑘
10𝑛+𝑘

∙
1

1 −
1
10𝑘

 

=
𝑎1𝑎2𝑎3…𝑎𝑛

10𝑛
+

𝑥1𝑥2…𝑥𝑘
10𝑛(10𝑘 − 1)

=
(10𝑘 − 1)𝑎1𝑎2𝑎3…𝑎𝑛 + 𝑥1𝑥2…𝑥𝑘

10𝑛+𝑘 − 10𝑛
 

The opposite statement is also true.  

Theorem. Rational numbers that are not finite decimals, are periodic infinite 

decimals.  

Proof. A rational number, 
𝑝

𝑞
, is expanded into a decimal fraction by performing 

the long division by an integer number, 𝑞. At each step of this division, there 

must be a non-zero remainder, otherwise the decimal fraction is finite. 

However, all possible remainders are integers between 1 and 𝑞 − 1, which 

means that some remainder, 𝑟, has to repeat within at most 𝑞 divisions. After 

that, the sequence of remainders between the first and the second appearance 

of 𝑟 will repeat periodically, thus yielding a periodic decimal fraction.  

Exercise. Show that decimals 0.09999… = 0.0(9) and 0.1 represent the same 

(rational) number. 

Infinite decimals that are not periodic represent numbers that are not 

rational, and therefore are irrational numbers.  



Real numbers are represented by all possible decimal fractions, both finite and 

infinite. While this definition of real numbers is quite simple and 

straightforward, it relies on a particular (decimal) numbers system, and does 

not offer an equally simple way to port algebraic operations, which have been 

introduced for rational numbers, to the real numbers.  

Real numbers as nested intervals. The construct with a set of nested intervals 

with the rational endpoints illustrated in the figure above, provides a natural 

way to define the irrational numbers. This definition is based on a geometrical 

postulate that an infinite set of nested intervals whose length tends to zero (ie 

is smaller than any arbitrarily chosen small number for all intervals except for 

a finite subset) has precisely one point common to all intervals. This point, 

even though it is defined by the nested intervals with rational endpoints, itself 

can be either rational, or irrational. The set of all such points, determined by 

all possible sets of nested rational intervals, defines all real numbers.   

Real numbers  as Dedekind cuts. An alternative, axiomatic way to extend 

rational numbers and define real numbers was proposed by Richard Dedekind 

in 1872. Let us assume that we can divide the set of rational numbers ℚ into 

two subsets, ℚ<  and ℚ> , such that all elements of ℚ> are larger than any 

element of ℚ<: ∀𝑎 ∈ ℚ<, ∀𝑏 ∈ ℚ>, 𝑎 < 𝑏. The partition of the set of rational 

numbers into two such subsets is called Dedekind’s cut. There are three 

possibilities in such a partition, 

1. ℚ> contains the smallest element, ∃𝑏0 ∈ ℚ>, ∀𝑏 ∈ ℚ>, 𝑏0 < 𝑏  

2. ℚ< contains the largest element, ∃𝑎0 ∈ ℚ<, ∀𝑎 ∈ ℚ<, 𝑎 < 𝑎0 

3. Neither ℚ> contains the smallest element, nor ℚ< contains the largest 

element 

In the third case, where there is neither a largest rational number in ℚ<, nor 

the smallest rational element in ℚ>, the cut, according to Dedekind, defines an 

irrational number. This definition agrees with the definition based on the 

nested intervals, as each set of nested rational intervals defines a Dedekind 

cut, if we associate all rational numbers that are larger than the right (larger) 

side of any of the intervals with ℚ>, and the rest of the rational numbers 

(those to the left of all intervals) with ℚ<.  



Having defined real numbers as nested intervals, or the Dedekind cuts, it is 

easy to see that all the usual arithmetic operations and properties of rational 

numbers are transposed to real numbers. For the case of nested intervals, this 

is accomplished by applying an operation to the rational endpoints of the two 

intervals that define two real numbers, and associating the result with the 

third set of nested intervals so obtained. Similarly, operations for the 

Dedekind cuts are defined by reference to rational sets that define the cut. 

Properties of real numbers. Ordering and comparison.  

1. ∀ 𝑎, 𝑏 ∈ ℝ, one and only one of the following relations holds 

• 𝑎 = 𝑏 

• 𝑎 < 𝑏 

• 𝑎 > 𝑏 

2. ∀ 𝑎, 𝑏 ∈ ℝ, ∃𝑐 ∈ ℝ, (𝑐 > 𝑎) ∧ (𝑐 < 𝑏), i.e. 𝑎 < 𝑐 < 𝑏 

3. Transitivity. ∀ 𝑎, 𝑏, 𝑐 ∈ ℝ, {(𝑎 < 𝑏) ∧ (𝑏 < 𝑐)}
 
⇒ (𝑎 < 𝑐)  

4. Archimedean property. ∀ 𝑎, 𝑏 ∈ ℝ, 𝑎 > 𝑏 > 0, ∃𝑛 ∈ ℕ, such that 𝑎 < 𝑛𝑏 

5. Continuity. Consider a set of nested segments [𝑎𝑛, 𝑏𝑛], 𝑛 ∈ ℕ, 𝑎𝑛, 𝑏𝑛 ∈ ℝ, 

𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛 ≤ 𝑏1 ≤ 𝑏2 ≤ ⋯𝑏𝑛. Then, ∃ 𝐴, ∀𝑛 𝐴 ∈ [𝑎𝑛, 𝑏𝑛]. If 

|𝑎𝑛 − 𝑏𝑛|
 
→ 0, then such point 𝐴 is unique.  

Properties of real numbers. Addition and subtraction.  

• ∀ 𝑎, 𝑏 ∈ ℝ, 𝑎 + 𝑏 = 𝑏 + 𝑎 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℝ, (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) 

• ∀ 𝑎 ∈ ℝ, ∃0 ∈ ℝ, 𝑎 + 0 = 𝑎 

• ∀ 𝑎 ∈ ℝ, ∃ − 𝑎 ∈ ℝ, 𝑎 + (−𝑎) = 0 

• ∀ 𝑎, 𝑏 ∈ ℝ, 𝑎 − 𝑏 = 𝑎 + (−𝑏) 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℝ, (𝑎 < 𝑏)
 
⇒ (𝑎 + 𝑐 < 𝑏 + 𝑐) 

Properties of real numbers. Multiplication and division.  

• ∀ 𝑎, 𝑏 ∈ ℝ, 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℝ, (𝑎 ∙ 𝑏) ∙ 𝑐 = 𝑎 ∙ (𝑏 ∙ 𝑐) 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℝ, (𝑎 + 𝑏) ∙ 𝑐 = 𝑎 ∙ 𝑐 + 𝑏 ∙ 𝑐 



• ∀ 𝑎 ∈ ℝ, ∃1 ∈ ℝ , 𝑎 ∙ 1 = 𝑎 

• ∀ 𝑎 ∈ ℝ, 𝑎 ≠ 0, ∃
1

𝑎
∈ ℝ, 𝑎 ∙

1

𝑎
= 1 

• ∀ 𝑎, 𝑏 ∈ ℝ, 𝑏 ≠ 0, 
𝑎

𝑏
= 𝑎 ∙

1

𝑏
 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℝ, c>0, (𝑎 < 𝑏)
 
⇒ (𝑎 ∙ 𝑐 < 𝑏 ∙ 𝑐) 

• ∀ 𝑎 ∈ ℝ, 𝑎 ∙ 0 = 0, 𝑎 ∙ (−1) = −𝑎 

 


