Homework for December 13, 2019.

Algebra.

Review the classwork handout. Review and solve the classwork exercises which were not solved (some are repeated below). Solve the following problems.

- 1. Present examples of binary relations that are, and that are not equivalence relations.
- 2. For each of the following relations, check whether it is an equivalence relation and describe all equivalence classes.
 - a. On \mathbb{R} : relation given by $x \sim y$ if |x| = |y|
 - b. On \mathbb{Z} : relation given by $a \sim b$ if $a \equiv b \mod 5$
 - c. On $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, $(x_1, x_2) \sim (y_1, y_2)$ if $x_1 + x_2 = y_1 + y_2$; describe the equivalence class of (1, 2)
 - d. Let ~ be the relation on the set of all directed segments in the plane defined by $\overrightarrow{AB} \sim \overrightarrow{A'B'}$ if ABB'A' is a parallelogram.
 - e. On the set of pairs of integers, $\{(a, b), a, b \in \mathbb{Z}, b \neq 0\}$, $(a_1, b_1) \sim (a_2, b_2)$ if $a_1b_2 = a_2b_1$. Describe these equivalence classes. Is the set of the obtained equivalence classes countable?
- 3. Let $f: X \xrightarrow{f} Y$ be a function. Define a relation on X by $x_1 \sim x_2$ if $f(x_1) = f(x_2)$. Prove that it is an equivalence relation. Describe the equivalence classes for the equivalences defined by the following functions on \mathbb{R} .
 - a. $f(x) = x^2$: $x \sim y$ if $x^2 = y^2$.

b.
$$f(x) = \sin x$$
: $x \sim y$ if $\sin x = \sin y$.

4. Find the following sum.

$$\left(2+\frac{1}{2}\right)^2 + \left(4+\frac{1}{4}\right)^2 + \dots + \left(2^n + \frac{1}{2^n}\right)^2$$

- 5. The lengths of the sides of a triangle are three consecutive terms of the geometric series. Is the common ratio of this series, *q*, larger or smaller than 2?
- 6. Solve the following equation,

$$\frac{x-1}{x} + \frac{x-2}{x} + \frac{x-3}{x} + \dots + \frac{1}{x} = 3$$
, where x is a positive integer.

- 7. Find the following sum,
 - a. $1 + 2 \cdot 3 + 3 \cdot 7 + \dots + n \cdot (2^n 1)$
 - b. $1 \cdot 3 + 3 \cdot 9 + 5 \cdot 27 + \dots + (2n 1) \cdot 3^n$
- 8. Numbers $a_1, a_2, ..., a_n$ are the consecutive terms of a geometric progression, and the sum of its first *n* terms is S_n . Show that,

$$S_n = a_1 a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right)$$

9. Prove that three terms shown below are the three terms of the geometric progression, and find the sum of its first *n* terms, beginning with the first one below,

$$\frac{\sqrt{3}+1}{\sqrt{3}-1} + \frac{1}{3-\sqrt{3}} + \frac{1}{6} + \cdots$$

- 10. What is the maximum value of the expression, $(1 + x)^{36} + (1 x)^{36}$ in the interval $|x| \le 1$?
- 11. Find the coefficient multiplying x^9 after all parenthesis are expanded in the expression, $(1 + x)^9 + (1 + x)^{10} + \dots + (1 + x)^{19}$.