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Geometry.  

Recap: Corollaries of the Inscribed Angle Theorem.  Euclids’ theorems. Power 

of a point to a circle. 

Consider the following figures. Using the theorem on the angle inscribed into a 

circle and the similarity of the corresponding triangles, it is easy to prove the 

following Euclid theorems.  

1. If two chords, 𝐴𝐶 and 𝐵𝐷 intersect at a 
point 𝑃 inside the circle, then  

|𝐴𝑃||𝑃𝐶|  =  |𝐵𝑃||𝑃𝐷| =  𝑅2 − 𝑑2,  

where 𝑅 is the radius of the circle and and d 

is the distance from point 𝑃 to the center of 

the circle, 𝑑 = |𝑃𝑂|. 

Proof. 𝛥𝐴𝑃𝐵 ~ 𝛥𝐷𝑃𝐶, so  
|𝐴𝑃|

|𝐵𝑃|
=

|𝑃𝐷|

|𝑃𝐶|
, or, 

|𝐴𝑃||𝑃𝐶|  =  |𝐵𝑃||𝑃𝐷| =  𝑅2 − 𝑑2. 

2. If two chords, 𝐴𝐷 and 𝐵𝐶 intersect at a 
point 𝑃′ outside the circle, then 

|𝑃’𝐴||𝑃’𝐷|  =  |𝑃’𝐵||𝑃’𝐶| = |𝑃𝑇|2 =  𝑑2 − 𝑅2,  

where |𝑃𝑇| is a segment tangent to the circle.   

Proof. 𝛥𝑃′𝐵𝐷 ~ 𝛥𝑃′𝐴𝐶, so  
|𝑃′𝐴|

|𝑃′𝐵|
=

|𝑃′𝐷|

|𝑃′𝐶|
, or, |𝑃′𝐴||𝑃′𝐷|  =  |𝑃′𝐵||𝑃′𝐶|. 

For any circle of radius 𝑅 and any point 𝑃 distant 𝑑 from the center, the 

quantity 𝑑2 − 𝑅2 is called the power of 𝑃 with respect to the circle.  
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Application of the Euclids’ theorems: Eulers’ formula.  

Using the above theorem the following formula for the 

distance between the incenter and the circumcenter of 

a triangle can be established.  

Let 𝑂 and 𝐿 be the circumcenter and the incenter 

(that is, center of the circumscribed and the 

inscribed circle), respectively, of a triangle 𝐴𝐵𝐶, 

with circumradius 𝑅 and inradius 𝑟. Then, the 

distance |𝑂𝐿|  =  𝑑 is given by  

𝑑2  =  𝑅2 –  2𝑅𝑟. 

Indeed, consider the figure, where the chord 𝐴𝐴′ passes through the incenter 

𝐿, and the chord 𝐴′𝑀 is the diameter of the circumcircle, passing through its 

center 𝑂. Triangle 𝐴′𝑀𝐵 is the right triangle by the inscribed angle theorem, 

and by the same theorem ∠𝐵𝐴𝐴′ = ∠𝐵𝑀𝐴′. Hence, 𝛥𝐴′𝐵𝑀 is similar to the 

triangle with the hypotenuse 𝐴𝐿 whose leg is the radius of the inscribed circle 

(cf. Figure), so  

|𝐴′𝑀|: |𝐴′𝐵| = |𝐴𝐿|: 𝑟. 

Note that triangle 𝐵𝐴′𝐿 is isosceles, and therefore |𝐴′𝐵| = |𝐴′𝐿|. This is 

because ∠𝐴′𝐿𝐵 =  ∠𝐴𝐵𝐿 + ∠𝐵𝐴𝐿 as an external angle of 𝛥𝐴𝐵𝐿, while ∠𝐴′𝐵𝐿 =

 ∠𝐴′𝐵𝐶 + ∠𝐶𝐵𝐿 = ∠𝐴′𝐴𝐶 + ∠𝐶𝐵𝐿 by the inscribed angle theorem, and 

∠𝐵𝐴𝐿 = ∠𝐴′𝐴𝐶 and ∠𝐴𝐵𝐿 = ∠𝐶𝐵𝐿 since 𝐴𝐿 and 𝐵𝐿 are bisectors of ∠𝐵𝐴𝐶 

and ∠𝐶𝐵𝐴, respectively (because 𝐿 is the incenter).   

Substituting |𝐴′𝐵| = |𝐴′𝐿| and |𝐴′𝑀| = 2𝑅 in the above and using the Euclid 

theorem, |𝐴𝐿||𝐴′𝐿| = 𝑅2 − 𝑑2, we obtain,  

|𝐴𝐿||𝐴′𝐵| = |𝐴𝐿||𝐴′𝐿| = 𝑅2 − 𝑑2 = 2𝑅𝑟, 

which proves the above Euler’s formula.  

  



The nine-points circle problem.  

Theorem. The feet of the three altitudes of any triangle, the midpoints of the 

three sides, and the midpoints of the segments from the three vertices lo the 

orthocenter, all lie on the same circle, of radius ½𝑅.  

This theorem is usually credited to a German geometer Karl Wilhelm von 

Feuerbach, who actually rediscovered the theorem. The first complete proof 

appears to be that of Jean-Victor Poncelet, published in 1821, and Charles 

Brianson also claimed proving the same theorem prior to Feuerbach. The 

theorem also sometimes mistakenly attributed to Euler, who proved, as early 

as 1765, that the orthic triangle and the medial triangle have the same 

circumcircle, which is why this 

circle is sometimes called "the 

Euler circle". Feuerbach 

rediscovered Euler's partial result 

even later, and added a further 

property which is so remarkable 

that it has induced many authors 

to call the nine-point circle "the 

Feuerbach circle". 

Proof. Consider rectangles formed by the mid-lines of triangle ABC and of 

triangles 𝐴𝐵𝐻, 𝐵𝐶𝐻 and 𝐴𝐶𝐻.  
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Theorem. The orthocenter, 𝐻, centroid, 𝑀, and the circumcenter, 𝑂, of any 

triangle are collinear: all these three points lie on the same line, 𝑂𝐻, which is 

called the Euler line of the triangle. The orthocenter divides the distance from 

the centroid to the circumcenter in 2: 1 ratio.  

Proof.  Note that the altitudes of the medial 

triangle𝑀𝐴𝑀𝐵𝑀𝐶 are the perpendicular 

bisectors of the triangle 𝐴𝐵𝐶, so the 

orthocenter of Δ 𝑀𝐴𝑀𝐵𝑀𝐶 is the 

circumcenter, 𝑂, of Δ 𝐴𝐵𝐶. Now, using the 

property that centroid divides medians of a 

triangle in a 2:1 ratio, we note that triangles 

𝐵𝑀𝐻 and 𝑀𝐵𝑀𝑂 are similar, and homothetic with respect to point 𝑀, with the 

homothety coefficient 2. 

Theorem. The center of the nine-point-circle lies on the (Euler’s) line passing 

through orthocenter, centroid, and circumcenter, midway between the 

orthocenter and the circumcenter.  

Proof. Consider the figure. Note the colored 

triangle 𝐴1𝐵1𝐶1, which is formed by 

medians of triangles 𝐴𝐵𝐻, 𝐵𝐻𝐶 and 𝐶𝐻𝐴, 

and is therefore congruent to the medial 

triangle 𝑀𝐴𝑀𝐵𝑀𝐶 , but rotated 180 degrees. 

The 9 points circle is the circumcircle for 

both triangles, which means that rotation 

by 180 degrees about the center 𝑂9 of the 9 point circle moves Δ 𝑀𝐴𝑀𝐵𝑀𝐶  

onto Δ 𝐴1𝐵1𝐶1, and the orthocenter, 𝑂, of the Δ 𝑀𝐴𝑀𝐵𝑀𝐶 onto the orthocenter, 

𝐻, of the Δ 𝐴1𝐵1𝐶1.  
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