
November 10, 2019 

Geometry.  

Recap: The Inscribed Angle Theorem. 

Theorem. An angle 𝛼 inscribed in a circle is half of 

the central angle 𝛽 = 2𝛼 that subtends the same arc 

on the circle (Fig.1), or complete half of it to 180. 

Corollary. The angle does not change as its apex is 

moved to different positions on the circle.  

Proof. First, let us deal with the simple case when 

one of the rays of angle 𝐴𝐶𝐵′ passes through the 

center of the circle (Fig. 2). ∠𝐴𝑂𝐵′(𝛽) is a central 

angle that subtends the same arc as ∠𝐴𝐶𝐵′ (𝛼). 

Triangle 𝐴𝑂𝐶 is an isosceles triangle because 

|𝑂𝐴| = |𝑂𝐶|, so angle ∠𝑂𝐴𝐶 and angle ∠𝑂𝐶𝐴 are 

equal and angle ∠𝐴𝑂𝐶 = 180 −  2𝛼, but it is also 

equal 180 − 𝛽 as a supplement angel to angle 𝛽.  

∠𝐴𝑂𝐶 = 180 –  2𝛼 = 180 − 𝛽 
 

⇒ 𝛽 =  2𝛼. 

In the case when center of the circle placed inside of 

angle 𝐴𝐶𝐵 we can divide the angle 𝐴𝐶𝐵 with a ray 

𝐶𝐵′ passing through the center of the circle (Fig. 3). 

Now we have two inscribed angles: angle 𝐴𝐶𝐵′ and 

angle 𝐵′𝐶𝐵, each of them has one side which passes 

through the center of the circle and can use 

previous part to proof that 𝛽 = 2𝛼.  

𝛼 =  𝜙 +  𝜙′,  

𝛽 =  𝜓 +  𝜓′ =  2𝜙 +  2𝜙′ =  2(𝜙  +  𝜙′)  =  2𝛼. 

 

Fig. 1 

 

Fig. 2 

O





A

B

C

B’

 

 

Fig. 3 
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When center of the circle is outside of inscribed angle, we can draw a ray from 

a vertex of our angle through the center the circle (Fig. 4). Then the angle 

∠𝐴𝐶𝐵(𝛼) = ∠𝐵′𝐶𝐵(𝜙′)  −  ∠𝐵′𝐶𝐴(𝜙)  and we again 

can use the first part. 

𝛽 =  𝜓′ −  𝜓 =  2𝜙′ −  2𝜙 =  2(𝜙′ −  𝜙)  =  2𝛼. 

Only the case of obtuse angle is left. In this case the 

ray CB' passes through the center of the circle and 

divides angle ACB into two angles 𝜙 and  𝜙′ They 

are not now half of the angles 𝜓 and  𝜓′, but half of 

their supplement angles 𝜒 and  𝜒′ therefore,  

𝛼 =
1

2
𝜒 +

1

2
𝜒′ =

1

2
(𝜒 + 𝜒′) =

1

2
(180 − 𝜓 + 180 − 𝜓′) = 180 −

1

2
(𝜓 + 𝜓′) =

180 −
1

2
𝛽.  

The Rowland circle. 

In scientific diffraction instruments it is often desirable to have a diffraction 

mirror shaped in a way such that the reflection of a beam of light, or particles, 

emanating from a point source, and focused to a point, corresponds to the 

same angle between the incident and the reflected (diffracted) beam for any 

point on the mirror. Such mirror is a segment of the so-called Rowland circle.  
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Fig. 4 
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Properties of inscribed quadrilaterals. Ptolemey’s theorem.  

Consider the quadrilateral 𝐴𝐵𝐶𝐷 inscribed into a circle. It is 

clear from the theorem on the inscribed angle that 

the opposite angles of 𝐴𝐵𝐶𝐷 are supplementary (i. 

e. add to 180 degrees),  

�̂� + �̂� = �̂� + �̂� = 𝜋 

Theorem. A quadrilateral can be inscribed in a circle if 

and only if its opposite angles are supplementary.  

Now consider angles 𝛼, 𝛽, 𝛾, 𝛿, between the sides and the diagonals. The angle 

between the diagonals, 𝜑 = 𝛼 + 𝛾 = 𝜋 − (𝛽 + 𝛿).  

Theorem (Ptolemey). A quadrilateral can be inscribed in a circle if and only if 

the product f its diagonals equals the sum of the products of its opposite sides,  

𝑑1𝑑2  =  𝑎𝑐 + 𝑏𝑑         (1) 

Proof of the necessary condition of Ptolemey’s theorem, i.e. of Eq. (1) for an 

inscribed quadrilateral.  

Geometrical proof employs an elegant 

supplementary construct. Inventing such an 

additional geometrical element is one of the key, 

most important and powerful methods of 

geometrical proof.  

Draw segment 𝐶𝐸, whose endpoint, 𝐸, belongs to the 

diagonal BD, and which is at an angle 𝛾 = 𝐴𝐶�̂� to the side 

𝐶𝐷. Thus obtained 𝛥𝐷𝐸𝐶 ~ 𝛥𝐴𝐵𝐶. Therefore, 
|𝐴𝐶|

𝑐
=

𝑎

|𝐸𝐷|
.  

Furthermore, 𝐵𝐶�̂� = 𝐴𝐶�̂� = 𝛽 and therefore 𝛥𝐵𝐶𝐸 ~ 𝛥𝐴𝐶𝐷, so 
|𝐴𝐶|

𝑑
=

𝑏

|𝐵𝐸|
. 

Adding thus obtained equalities, we get  



𝑎𝑐 + 𝑏𝑑 =  |𝐴𝐶||𝐸𝐷|  + |𝐴𝐶||𝐵𝐸|  =  𝑑1𝑑2.  

The sufficiency of this condition can be easily proven by contradiction.  

Euclids’ theorems. Power of a point to a circle. 

Consider the following figures. Using the 

theorem on the angle inscribed into a circle 

and the similarity of the corresponding 

triangles, it is easy to prove the following 

Euclid theorems.  

i. If two chords AC and BD intersect at 
a point P inside the circle, then  

|𝐴𝑃||𝑃𝐶|  =  |𝐵𝑃||𝑃𝐷| =  𝑅2 − 𝑑2,  

where 𝑅 is the radius of the circle and 

and 𝑑 is the distance from point 𝑃 to the 

center of the circle, 𝑑 = |𝑃𝑂|. 

Proof. 𝛥𝐴𝑃𝐵 ~ 𝛥𝐷𝑃𝐶, so  
|𝐴𝑃|

|𝐵𝑃|
=

|𝑃𝐷|

|𝑃𝐶|
, or, 

|𝐴𝑃||𝑃𝐶|  =  |𝐵𝑃||𝑃𝐷| =  𝑅2 − 𝑑2. 

ii. If two chords 𝐴𝐷 and 𝐵𝐶 intersect at a point 𝑃′ outside the circle, then 

|𝑃’𝐴||𝑃’𝐷|  =  |𝑃’𝐵||𝑃’𝐶| = |𝑃𝑇|2 =  𝑑2 − 𝑅2,  

where |𝑃𝑇| is a segment tangent to the circle.   

Proof. 𝛥𝑃′𝐵𝐷 ~ 𝛥𝑃′𝐴𝐶, so  
|𝑃′𝐴|

|𝑃′𝐵|
=

|𝑃′𝐷|

|𝑃′𝐶|
, or, |𝑃′𝐴||𝑃′𝐷|  =  |𝑃′𝐵||𝑃′𝐶|. 

For any circle of radius 𝑅 and any point 𝑃 distant 𝑑 from the center of the 

circle, the quantity 𝑑2 − 𝑅2 is called the power of 𝑃 with respect to the circle.  

 

 


