
October 27, 2019 

Geometry.  

Selected problems on similar triangles (from last homeworks).  

Problem 1(5). Prove that altitudes of any triangle are the bisectors in another 

triangle, whose vertices are the feet of these altitudes (hint: prove that the line 

connecting the feet of two altitudes of a triangle cuts off a triangle similar to 

it).  

Solution. Notice similar right triangles, 

𝐴𝐶𝐻𝑎~𝐵𝐶𝐻𝑏 , which implies, 
|𝐴𝐶|

|𝐵𝐶|
=

|𝐶𝐻𝑎|

|𝐶𝐻𝑏|
. 

Therefore, 𝐶𝐻𝑎𝐻𝑏~𝐴𝐵𝐶. Similarly, from 

𝐶𝐴𝐻𝑐~𝐵𝐴𝐻𝑏 it follows that 𝐴𝐻𝑏𝐻𝑐~𝐴𝐵𝐶, and 

from 𝐴𝐵𝐻𝑎~𝐵𝐶𝐻𝑐  that 𝐵𝐻𝑐𝐻𝑎~𝐴𝐵𝐶.  

Problem 2(2). Rectangle DEFG is inscribed in triangle ABC such that the side 
DE belongs to the base AB of the triangle, while points F and G belong to sides 
BC abd CA, respectively. What is the largest area of rectangle DEFG?   

Solution. Notice similar triangles, 𝐶𝐷𝐸~𝐴𝐵𝐶, 
wherefrom the vertical side of the rectangle is, 

|𝐷𝐺| = |𝐸𝐹| = |𝐶𝐻| − |𝐶𝐻′| = (1 −
|𝐷𝐸|

|𝐴𝐵|
) |𝐶𝐻|, 

so that the area of the rectangle is, 𝑆𝐷𝐸𝐹𝐺 =

|𝐷𝐸||𝐷𝐺| = |𝐷𝐸| (1 −
|𝐷𝐸|

|𝐴𝐵|
) |𝐶𝐻| =

|𝐷𝐸|

|𝐴𝐵|
(1 −

|𝐷𝐸|

|𝐴𝐵|
) |𝐴𝐵||𝐶𝐻| =

|𝐷𝐸|

|𝐴𝐵|
(1 −

|𝐷𝐸|

|𝐴𝐵|
) 2𝑆𝐴𝐵𝐶 . Using 

the geometric-arithmetic mean inequality, 

|𝐷𝐸|

|𝐴𝐵|
(1 −

|𝐷𝐸|

|𝐴𝐵|
) ≤ (

|𝐷𝐸|

|𝐴𝐵|
+1−

|𝐷𝐸|

|𝐴𝐵|

2
)

2

=
1

4
, where the 

largest value of the left side is achieved when 
|𝐷𝐸|

|𝐴𝐵|
= 1 −

|𝐷𝐸|

|𝐴𝐵|
, and therefore 𝑆𝐷𝐸𝐹𝐺 =

1

2
𝑆𝐴𝐵𝐶 . 

There are a number of other possible 
solutions, some of which are shown in the figures.  
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Problem 3(1 ). Prove that for any triangle 𝐴𝐵𝐶  with sides 𝑎, 𝑏 and 𝑐, the 

area, 𝑆 ≤
1

4
(𝑏2 + 𝑐2).  

Solution. Notice that of all triangles with 
given two sides, 𝑏 and 𝑐, the largest area 
has triangle 𝐴𝐵𝐶′, where the sides with the 
given lengths, |𝐴𝐵| = 𝑐 and |𝐴𝐶| = 𝑏 form 
a right angle, 𝐵𝐴�̂� = 90° (𝑏 is the largest 
possible altitude to side 𝑐). Therefore, 

∀∆𝐴𝐵𝐶, 𝑆𝐴𝐵𝐶 ≤ 𝑆𝐴𝐵𝐶′ =
1

2
𝑏𝑐 ≤

1

2

𝑏2+𝑐2

2
, where the last inequality follows 

from the arithmetic-geometric mean inequality, 𝑏𝑐 ≤
𝑏2+𝑐2

2
 (or, 

alternatively, follows from 𝑏2 + 𝑐2 − 2𝑏𝑐 = (𝑏 − 𝑐)2 ≥ 0.  

Problem 4(2  ). In an isosceles triangle 𝐴𝐵𝐶 with the side |𝐴𝐵| = |𝐵𝐶| = 𝑏, 

the segment |𝐴′𝐶′| = 𝑚 connects the intersection points of the bisectors, 

𝐴𝐴′ and 𝐶𝐶′ of the angles at the base, 𝐴𝐶, with the corresponding opposite 

sides, 𝐴′ ∈ 𝐵𝐶 and 𝐶′ ∈ 𝐴𝐵. Find the length of the base, |𝐴𝐶| (express 

through given lengths, 𝑏 and 𝑚).   

Solution. From Thales proportionality theorem we have, 
|𝐴𝐶|

𝑚
=

|𝐵𝐶|

|𝐵𝐴′|
=

|𝐵𝐴′|+|𝐴′𝐶|

|𝐵𝐴′|
= 1 +

|𝐴′𝐶|

|𝐵𝐴′|
= 1 +

|𝐴𝐶|

𝑏
, where we 

have used the property of the bisector, 
|𝐴′𝐶|

|𝐵𝐴′|
=

|𝐴𝐶|

|𝐴𝐵|
=

|𝐴𝐶|

𝑏
. 

We thus obtain, |𝐴𝐶| =
1

1

𝑚
−

1

𝑏

=
𝑏𝑚

𝑏−𝑚
.  

Problem 5(5 ). Three lines parallel to the respective 

sides of the triangle 𝐴𝐵𝐶 intersect at a single point, 

which lies inside this triangle. These lines split the 

triangle 𝐴𝐵𝐶 into 6 parts, three of which are triangles 

with areas 𝑆1, 𝑆2, and 𝑆3. Show that the area of the 

triangle 𝐴𝐵𝐶, 𝑆 = (√𝑆1 + √𝑆2 + √𝑆3)
2

 (see Figure).  

Solution. Denote 
𝑆1

𝑆
= 𝑘1, 

𝑆2

𝑆
= 𝑘2, 

𝑆3

𝑆
= 𝑘3. Then, 

𝑆1+𝑆2+𝑄3

𝑆
= 𝑘1 + 𝑘2 +

𝑄3

𝑆
=

(√𝑘1 + √𝑘2)
2

, so, 𝑄3 = 2𝑆√𝑘1𝑘2 = √𝑆1𝑆2, 𝑄2 = √𝑆3𝑆1 , 𝑄1 = √𝑆2𝑆3.  
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The Law of Lever. The Method of the Center of Mass.  

Archimedes’ Law of Lever.  

"Give me a place to stand on, and I will move the earth." 

quoted by Pappus of Alexandria in Synagoge, Book VIII, c. AD 340 

Archimedes of Syracuse generally considered the 
greatest mathematician of antiquity and one of the 
greatest of all time. Archimedes anticipated modern 
calculus and analysis by applying concepts of 
infinitesimals and the method of exhaustion to derive 
and rigorously prove a range of geometrical theorems, 
including the area of a circle, the surface area and 
volume of a sphere, and the area under a parabola.   

He was also one of the first to apply mathematics to 

physical phenomena, founding hydrostatics and statics, 

including an explanation of the principle of the lever. 

He is credited with designing innovative machines, such 

as his screw pump, compound pulleys, and defensive 

war machines to protect his native Syracuse from the 

Roman invasion.  

Theorem (Law of Lever).  Masses (weights) balance at distances from the 

fulcrum, which are inversely proportional to their magnitudes,  
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Archimedes of Syracuse 

Born c. 287 BC  

Syracuse, Sicily  

Magna Graecia 

Died c. 212 BC (aged 

around 75) , Syracuse 
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In terms of modern physics, it can be restated by saying that the weights 

balance if the torque on both sides is the same, where torque is defined as 

force*(distance to fulcrum). 

Method of the Center of Mass (Mass Points).  

Another way to restate Archimedes law of the lever is by using the notion of 

center of mass. 

Definition. For two point masses, mA and mB at points A and B, the center of 

mass lies at a point C’ on the straight line segment |AB| such that,  

|𝐴𝐶′|

|𝐶′𝐵|
=

𝑚𝐵

𝑚𝐴
. 

Then we can restate Archimedes law by saying that the balance of the system 

will not change if we replace a pair of masses by a single mass mA+ mB placed 

at their center of mass. In particular, the system will be balanced if the center 

of mass is directly above the fulcrum.  

Center of mass can also be defined for a system of more than 2 point masses: 

by  repeatedly replacing any pair of masses, mA and mB, with a single point 

mass having the total mass mA + mB, placed at the center of mass of the pair. 

(It is not obvious why the end result doesn’t depend on the order we made 

these replacements – we will prove it later.) 

So defined center of mass (COM) has the following important property:  

The position of the system’s center of mass does not change if we 

replace some subset  of point masses with a single point mass, whose 

mass equals the sum of all these masses and which is positioned at their 

COM. 



Ceva’s Theorem: Proof using COM.  

We select masses, mA, mB, and mC such that 

the corresponding centers of mass for each 

pair are at points A’, B’ and C’, respectively.  

Then, 

|𝐴𝐵′|

|𝐵′𝐶|
∙

|𝐶𝐴′|

|𝐴′𝐵|
∙

|𝐵𝐶′′|

|𝐶′𝐴|
=

𝑚𝐶

𝑚𝐴
∙

𝑚𝐵

𝑚𝐶
∙

𝑚𝐴

𝑚𝐵
= 1.  
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