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Geometry.  

Thales (intercept) theorem. Similarity and related concepts. 

Megiston topos: hapanta gar chorei (Μέγιστον τόπος· άπαντα γαρ χωρεί) 

”Space is the greatest thing, as it contains all things”  

Thales of Miletus (/ˈθeɪliːz/; Greek: Θαλῆς (ὁ Μιλήσιος), 
Thalēs; c. 624 – c. 546 BC) was a pre-Socratic Greek 
philosopher from Miletus in Asia Minor, and one of the 
Seven Sages of Greece. Many, most notably Aristotle, 
regards him as the first philosopher in the Greek 
tradition.  

Thales was probably the first to introduce the scientific 
method into public discourse. He attempted to explain 
natural phenomena without reference to mythology 
and was tremendously influential in this respect. 
Thales' rejection of mythological explanations became 
an essential idea for the scientific revolution. He was 
also the first to define general principles and set forth 
hypotheses, and as a result has been dubbed the 
"Father of Science". Aristotle reported Thales' 
hypothesis about the nature of matter – that the 
originating principle of nature was a single material 

substance: water, the first materialist philosophy.  

In mathematics, Thales is known for his contribution to geometry, both 
theoretical as well as practical. Thales understood similar triangles and right 
triangles, and used that knowledge in practical ways to solve problems such 
as calculating the height of pyramids and the distance of ships from the shore. 
The story is told that he measured the height of the pyramids by their 
shadows at the moment when his own shadow was equal to his height. He is 
also credited with the first use of deductive reasoning applied to geometry, by 
deriving four corollaries to Thales' Theorem. As a result, he has been hailed as 
the first true mathematician.   
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Thales (intercept) theorem.  

Thales' intercept theorem (not to be confused with another theorem with that 

name, which is a particular case of the inscribed angle theorem) is an 

important theorem in elementary geometry about the ratios of various line 

segments that are created if two intersecting lines are intercepted by a pair of 

parallels. It is equivalent to the theorem about ratios in similar triangles.  

Theorem 1. Let parallel lines AA’, BB’, CC’ and DD’ 

intercept the sides of an angle AOA’ such that 

segments AB and CD on one side of the angle are 

congruent, |AB| = |CD|. Then the corresponding 

segments formed at the intersection of these lines 

with the other side of the angle are also 

congruent, |A’B’|=|C’D’|, Fig. 1(a).  

Proof. Draw lines A’B’’ and C’D’’ parallel to the 

side OA, such that AA’B’’B and CC’D’’D are 

parallelograms, Fig. 1(b). By the property of a 

parallelogram, |AB|=|A’B’’|, and |CD|=|C’D’’|. 

Angles B’A’B’’ and D’C’D’’ and A’B’’B’ and C’D’’D’ 

are formed by the parallel lines and therefore are 

congruent. Hence, triangles A’B’’B’ and C’D’’D’ are 

congruent, and therefore |A’B’|=|C’D’|. 

Theorem 2. Let the sides of an angle AOA’ be intercepted by two parallel lines 

AA’ and BB’, Fig. 2. Then, for the segments obtained by these intersections, the 

following holds.  

1. The ratios of any 2 segments on the first line, 
OA, equal the ratios of the corresponding 
segments on the second line, OA’,  

|𝑂𝐴|

|𝐴𝐵|
=

|𝑂𝐴′|

|𝐴′𝐵′|
  ⋀ 

|𝑂𝐵|

|𝑂𝐴|
=

|𝑂𝐵′|

|𝑂𝐴′|
 ⋀ 

|𝑂𝐵|

|𝐴𝐵|
=

|𝑂𝐵′|

|𝐴′𝐵′|
.  

2. The ratio of the 2 segments on the same line 
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starting at O equals the ratio of the segments on the parallels,  

 
|𝑂𝐴|

|𝑂𝐵|
=

|𝑂𝐴′|

|𝑂𝐵′|
=

|𝐴𝐴′|

|𝐵𝐵′|
.  

3. The converse of the first statement is true as well, i.e. if the 2 intersecting 
lines forming the sides of an angle with the vertex O are intercepted by 2 
arbitrary lines at points A, B on one side and A’, B’ on the other, such that 
|𝑂𝐴|

|𝑂𝐵|
=

|𝑂𝐴′|

|𝑂𝐵′|
 holds, then the 2 intercepting lines are parallel. However, the 

converse of the second 
statement is not true.  

4. If you have more than 2 lines 
intersecting in O, then ratio of 
the 2 segments on a parallel 
equals the ratio of the 
according segments on the 
other parallel. Several 
examples of parallel lines 
configurations are shown in 
the Figure.  

|𝐴𝐴′′|

|𝐵𝐵′′|
=

|𝐴′′𝐴′|

|𝐵′′𝐵′|
, 

|𝐴𝐴′′|

|𝐴𝐴′|
=

|𝐵𝐵′′|

|𝐵𝐵′|
.  

Proof. We shall prove the statement 1 above, the rest follows 

straightforwardly.  

According to Thales Theorem (Theorem 1 above), the intercept points of a set 

of parallel lines passing through the endpoints of an equal length segments on 

one side of an angle form a set of equal-length segments on the other side of 

the same angle. Consider the situation where 

parallel lines AA’ and BB’ intercept angle AOA’, 

and assume that 
|𝐴𝐵|

|𝑂𝐴|
=

|𝐴′𝐵′|

|𝑂𝐴′|
 does not hold. For 

definitiveness, let us assume that 
|𝐴𝐵|

|𝑂𝐴|
>

|𝐴′𝐵′|

|𝑂𝐴′|
. 

Then, there exists point B’’ belonging to the side 
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OA’, such that |OB”|>|OB|, and 
|𝐴𝐵|

|𝑂𝐴|
=

|𝐴′𝐵′′|

|𝑂𝐴′|
.  

Let us draw a set of lines parallel to AA’ and BB’, such that they divide segment 

OA’ into a set of congruent segments of length 𝑙 < |B’B’’|. If we continue these 

lines past point A, there are two possibilities. Either segments OA’ and OB’ are 

commensurate and 𝑙 is their common measure, then one of the lines must 

coincide with BB’, or, the first such line passing farther from O than BB’ is CC’, 

and |OC’|<|OB’’|.  

In the first case, both OA and OB and AA’ and BB’ are divided into an equal 

number of congruent segments, and, therefore,  
|𝐴𝐵|

|𝑂𝐴|
=

|𝐴′𝐵′|

|𝑂𝐴′|
 holds. In the 

second case, because all segments obtained at the intercepts of these lines 

with the sides of the angle are respectively congruent, 
|𝐴𝐶|

|𝑂𝐴|
=

|𝐴′𝐶′|

|𝑂𝐴′|
. On the 

other hand, by construction we have |AC|>|AB| and |A’C’|<|A’B’’|, so 
|𝐴′𝐵′′|

|𝑂𝐴′|
>

|𝐴′𝐶′|

|𝑂𝐴′|
=

|𝐴𝐶|

|𝑂𝐴|
>

|𝐴𝐵|

|𝑂𝐴|
, which contradicts our assumption. Another way to note a 

contradiction with our assumptions is 
|𝐴𝐵|

|𝑂𝐴|
<

|𝐴𝐶|

|𝑂𝐴|
=

|𝐴′𝐶′|

|𝑂𝐴′|
<

|𝐴′𝐵′′|

|𝑂𝐴′|
=

|𝐴𝐵|

|𝑂𝐴|
. Hence, 

|𝐴𝐵|

|𝑂𝐴|
=

|𝐴′𝐵′|

|𝑂𝐴′|
 must hold.  

Consequently, 
|𝑂𝐵|

|𝑂𝐴|
= 1 + 

|𝐴𝐵|

|𝑂𝐴|
= 1 +

|𝐴′𝐵′|

|𝑂𝐴′|
=

|𝑂𝐵′|

|𝑂𝐴′|
 also holds.  

Exercise. Prove claim 2 of the theorem, i. e. 
|𝑂𝐴|

|𝑂𝐵|
=

|𝑂𝐴′|

|𝑂𝐵′|
=

|𝐴𝐴′|

|𝐵𝐵′|
.  

Hint: draw line B’B’’ parallel to OB and apply 

the claim 1 proven above to the obtained 

segments on the angle OA’A.  
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Heuristic Alternate Proof of Thales Theorem 

claim 1 

 

Due to heights of equal length (  ) we have 

and therefore . This yields 

and  

Plugging in the actual formula for triangle areas (
𝑏𝑎𝑠𝑒∙ℎ𝑒𝑖𝑔ℎ𝑡

2
) transforms 

that into 
|𝑆𝐶|

|𝐶𝐷|
∙

|𝐴𝐹|

|𝐴𝐹|
=

|𝑆𝐴|

|𝐴𝐵|
∙

|𝐸𝐶|

|𝐸𝐶|
⋀

|𝑆𝐶|

|𝑆𝐷|
∙

|𝐴𝐹|

|𝐴𝐹|
=

|𝑆𝐴|

|𝑆𝐵|
∙

|𝐸𝐶|

|𝐸𝐶|
 

Cancelling the common factors results in: 

(a) 
|𝑆𝐶|

|𝐶𝐷|
=

|𝑆𝐴|

|𝐴𝐵|
 and (b) 

|𝑆𝐶|

|𝑆𝐷|
=

|𝑆𝐴|

|𝑆𝐵|
. 

Now use (b) to replace | SA | and | SC | in (a):
 
|𝑆𝐴|∙|𝑆𝐷|

|𝑆𝐵|

|𝐶𝐷|
=

 
|𝑆𝐵|∙|𝑆𝐶|

|𝑆𝐷|

|𝐴𝐵|
  

Using (b) again this simplifies to: (c) 
|𝑆𝐷|

|𝐶𝐷|
=

|𝑆𝐵|

|𝐴𝐵|
  

claim 2 

http://en.wikipedia.org/wiki/File:Intercept_theorem_proof.svg


 

Draw an additional parallel to SD through A. This parallel intersects BD 

in G. Then you have | AC | = | DG | and due to claim 1 
|𝑆𝐴|

|𝑆𝐵|
=

|𝐷𝐺|

|𝐵𝐷|
 and 

therefore 
|𝑆𝐴|

|𝑆𝐵|
=

|𝐴𝐶|

|𝐵𝐷|
. 

claim 3 

 

Assume AC and BD are not parallel. Then the parallel line to AC through 

D intersects SA in . Since | SB | : | SA | = | SD | : | SC | is true, we 

have 

|𝑆𝐵| =
|𝑆𝐷| ∙ |𝑆𝐴|

|𝑆𝐶|
 

and on the other hand from claim 2 we have 

|𝑆𝐵0| =
|𝑆𝐷|∙|𝑆𝐴|

|𝑆𝐶|
. So 𝐵 and 𝐵0 are on the same side of S and have the 

same distance to S, which means 𝐵 = 𝐵0. This is a contradiction, so the 

assumption could not have been true, which means AC and BD are 

indeed parallel  

claim 4 

Can be shown by applying the intercept theorem for 2 lines. 

http://en.wikipedia.org/wiki/File:Intercept_theorem_proof2.svg
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Related Concepts 

Parallel Lines in Triangles and Trapezoids 

The intercept theorem can be used to prove that a certain construction yields 

a parallel line (segment). 

If the midpoints of 2 triangle sides are 

connected then the resulting line 

segment is parallel to the 3rd triangle 

side. 

 

If the midpoints of 2 the non parallel 

sides of a trapezoid are connected, then 

the resulting line segment is parallel to 

the other 2 sides of the trapezoid. 

 

Similarity and similar Triangles 

 

Arranging 2 similar triangles, so that the intercept theorem can be applied 

The intercept theorem is closely related to similarity. In fact it is equivalent to 

the concept of similar triangles, i.e. it can be used to prove the properties of 

similar triangles and similar triangles can be used to prove the intercept 

theorem. By matching identical angles you can always place 2 similar triangles 

in one another, so that you get the configuration in which the intercepts 

applies and vice versa the intercept theorem configuration contains always 2 

similar triangles.  
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A=A' B

C

A’ B’ B’

C’C’
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Algebraic formulation of Compass and Ruler Constructions 

There are 3 famous problems in elementary geometry, which were posed by 

the Greek in terms of Compass and straightedge constructions. 

1. Trisecting the angle 
2. Doubling the cube 
3. Squaring the circle 

Their solution took more than 2000 years until all 3 of them finally were 

settled in the 19th century using algebraic methods that had become available 

during that period of time. In order to reformulate them in algebraic terms 

using field extensions, one needs to match field operations with compass and 

straightedge constructions. In particular it is important to assure that for 2 

given line segments, a new line segment can be constructed such that its 

length equals the product of lengths of the other two. Similarly one needs to 

be able to construct, for a line segment of length d, a new line segment of 

length d − 1. The intercept theorem can be used to show that in both cases the 

construction is possible. 

Construction of a product 

 

Construction of an Inverse 

 

Dividing a line segment in a given ratio 

http://en.wikipedia.org/wiki/Compass_and_straightedge_constructions
http://en.wikipedia.org/wiki/Compass_and_straightedge_constructions
http://en.wikipedia.org/wiki/Trisecting_the_angle
http://en.wikipedia.org/wiki/Trisecting_the_angle
http://en.wikipedia.org/wiki/Doubling_the_cube
http://en.wikipedia.org/wiki/Doubling_the_cube
http://en.wikipedia.org/wiki/Squaring_the_circle
http://en.wikipedia.org/wiki/Squaring_the_circle
http://en.wikipedia.org/wiki/Field_extension
http://en.wikipedia.org/wiki/Field_extension
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/File:Multiplication_intercept_theorem.svg
http://en.wikipedia.org/wiki/File:Construction_of_an_Inverse.svg


To divide an arbitrary line segment 

in a m:n ratio you draw an 

arbitrary angle in A with as one 

leg. One other leg you construct m + 

n equidistant points, then you draw 

line through the last point and B and 

parallel line through the mth point. 

This parallel line divides in the 

desired ratio. The graphic to the right 

shows the partition of a line sgement 

in a 5:3 ratio. 
 

Applications to Measuring/Survey 

Height of the Cheops Pyramid 

 

 

According to some historical sources the Greek mathematician Thales applied 

the intercept theorem to determine the height of the Cheops' pyramid. The 

following description illustrates the use of the intercept theorem to compute 

the height of the Cheops' pyramid, it does however not recount Thales' 

original work, which was lost. 

He measured length of the pyramid's base and the height of his pole. Then at 

the same time of the day he measured the length pyramid's shadow and the 

length of the pole's shadow. This yields him the following data to work with: 

• height of the pole (A): 1.63m 
• shadow of the pole (B): 2m 

Figures illustrate measuring pieces and computing C and D 

 

http://en.wikipedia.org/wiki/Thales
http://en.wikipedia.org/wiki/Thales
http://en.wikipedia.org/wiki/Great_Pyramid_of_Giza
http://en.wikipedia.org/wiki/Great_Pyramid_of_Giza
http://en.wikipedia.org/wiki/File:Dividing_segment.svg
http://en.wikipedia.org/wiki/File:Thales_theorem_6.png
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• length of the pyramid base: 230m 
• shadow of the pyramid: 65m 

From this he computed 

 

Knowing A,B and C he was now able to apply the intercept theorem to 

compute 

 

Measuring the Width of a River 

The intercept theorem 

can be used determine a 

distance that cannot be 

measured directly, such 

as the width of a river or 

a lake, tall buildings or 

similar. The graphic to 

right illustrates the 

measuring of the width 

of a river. The segments 

|CF | , |CA | , |FE | are 

measured and used to 

compute the wanted distance |𝐴𝐵| =
|𝐴𝐶||𝐹𝐸|

|𝐹𝐶|
.  

http://en.wikipedia.org/wiki/File:River_chart.jpg

